UNIVERSITI TEKNOLOGI MARA

VERMICOMPOSTING FROM EMPTY FRUIT BUNCH (EFB) USING EISENIA FETIDA AND THE EFFECT TO PLANT GROWTH OF SPINACIA OLERACEA AND IPOMOEA REPTANS

MUHAMMAD FARHAN BIN SURYANI NURUL ASYIKIN BINTI RAJUDIN NUR AIN FARAHIYAH BINTI MAT RAZI

Draft project submitted in fulfilment of the requirements for the degree of

Bachelor of Environmental Health and Safety (Hons.)

Faculty of Health Sciences

August 2020

ACKNOWLEDGEMENT

In the name of Allah S.W.T. the Most Gracious, the Most Merciful

Alhamdulillah all praise to Allah S.W.T The Supreme Lord of the Universe for giving us strength, passion and health to complete our study. Our greatest pleasure and Salam to the great Prophet Muhammad S.A.W. At this liberty, we would like to express our highest gratitude to our parents for their full encouragement. Thank you for providing everything we needed in order to complete this research. We would not have able to do so without their full support.

Our gratitude also goes to our supervisor, Madam Siti Rohana Binti Mohd Yatim who sacrificed her time to give us her guidance in order to proceed in this research. Without her insights and thoughtful supervision, this research could not have been completed. Her willingness to contribute ideas and support throughout the project is also deeply appreciated.

Moreover, we would like to thank all lecturers in the Department of Environmental Health & Safety, Faculty of Health Sciences for all advices and guidance in this subject. Also providing the information needed regarding this course.

Last but not least, I would like to express our warmest gratitude to our friends that never stop sharing their knowledge regarding this course and never stop giving support during hard times. This assistance and guide helped us get through this semester. Your cooperation is much appreciated.

Thank you.

TABLE OF CONTENTS

TITLE			
DECLARATION BY STUDENT	i		
INTELLECTUAL PROPERTIES	ii		
APPROVAL BY SUPERVISOR	v		
ACKNOWLEDGEMENT	vi		
TABLE OF CONTENTS	vii		
LIST OF TABLES	xii		
LIST OF FIGURES	xiv		
LIST OF EQUATION LIST OF ABBREVIATIONS ABSTRACT	xvi xvii xviii		
		ABSTRAK	xix
CHAPTER 1: INTRODUCTION	1		
1.1 Background of Study	1		
1.2 Problem Statement	5		
1.3 Objectives	7		
1.3.1 General Objectives	7		
1.3.2 Specific Objectives	7		
1.4 Hypothesis	7		
1.5 Scope and Limitation	8		
1.6 Significance of Study	9		
1.7 Conceptual Framework	10		
CHAPTER 2: LITERATURE REVIEW	12		
2.1 Introduction	12		
2.2 Oil palm in agriculture industry	12		
2.3 Vermicomposting process	13		
2.4 Function of <i>Eisenia Fetida</i> in vermicomposting	14		

ABSTRACT

Palm oil mill waste (POMW) consist of empty fruit bunches contributes the largest portion of agricultural waste in Malaysia. Poor agricultural waste management may problems and overflowing of landfill. environmental vermicomposting can be an eco-friendly way to convert these wastes into biofertilizer using Eisenia fetida which can be useful for sustainable agricultural practices. This study aims to analyze the effectiveness of vermicomposting from empty fruit bunches using Eisenia fetida and its application to the growth of Ipomoea aquatica and Spinacia oleracea plant. Vermicomposting was conducted for 10 weeks using different media in duplicate (A1, A2 and A3) and (B1, B2 and B3). Meanwhile, plant growth was conducted for 30 days using three treatments [control, vermicompost and chemical fertiliser] each having two replications for each plant. The outcome shows A2 with ratio 50:50 (EFB: FW) can retain a higher amount of moisture content, lower electrical conductivity value with the most steadily drop pH of 7.2. Moreover, maximum weight increase (5.11 g) of E. fetida with highest growth rate (0.0725 \pm 0.00070) and the highest total number of cocoons (16 cocoons) were observed in B1. Furthermore, vermicompost has a significant effect on the growth of Ipomoea aquatica and Spinacia oleracea plants which resulting in plants with better plant height, number of leaves and length of roots. Finally, the results indicated that the A2 with 50:50 ratio of EFB: FW has the best ratio of vermicomposting for physical parameters and B1 with 150 g media per 5 earthworms has the most efficient ratio for earthworms' growth performance. As for the plant growth of *Ipomoea aquatica* and *Spinacia oleracea*, the arrangement was in order of the best; vermicompost treatment > chemical fertilizer treatment > control treatment.

Keyword: Vermicomposting, *Eisenia fetida*, Empty fruit bunches, Physical parameters, Earthworm growth, Plant growth

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

The problem of efficient disposal and management of solid wastes has become more difficult due to the rapidly increasing population, intensive agriculture and industrialization, over the last few years. Based on Manyuchi et al. (2017), vermicomposting is a low-cost technology and is easily scalable hence an attractive option for waste management. It is used in farming and small scale sustainable as well as organic farming. It also has gained popularity in both industrial and domestic settings because as compared with conventional composting, it provides a way to treat organic wastes more quickly. It is being considered as a potential option in the hierarchy of integrated solid waste management that involves the stabilization of organic material by the joint action of earthworms and microorganisms. Palm oil mill waste (POMW) contributes the largest share of agricultural waste in Malaysia. Based on the statistics obtained from the Malaysian Palm Oil Board, Malaysia controlled about 45% of total palm oil production in the world (Singh et al, 2011). Palm oil wastes include palm oil mill effluent (POME), decanter cake, empty fruit bunches (EFB), oil palm fronds (OPF), oil palm trunks (OPT), seed shells and the fibre from mesocarp are generally disposed of through open dumping, fertilizers or animal feed. Palm oil wastes have major lignocellulosic constituents including ash, extractives hot water, alcohol- toluene, klason lignin, hemicellulose, alfa cellulose and holocellulose (Hayawin et al, 2011). The usage of empty fruit bunch (EFB) as a type of bedding had been widely used in other studies and proved to be effective in vermicomposting (Rupani et al., 2018; Hayawin et al., 2014; Lim et al., 2014; Sabrina et al., 2009).