THEORETICAL INVESTIGATION ON THE EFFECT OF CLUSTER SIZE AND LEVEL OF DENSITY FUNCITONALS IN BONDING CASE STUDY ON GLYCINE AND CYTIDINE

ABDUL RAZAK BIN MUHAMMAD

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons) Physics in the Faculty of Applied Sciences Universiti Teknologi Mara

July 2025

This Final Year Project Report entitled "Theoretical Investigation on the Effect of Cluster Size and Level of Density Functionals in Bonding: Case Study on Glycine and Cytidine" was submitted by Abdul Razak Bin Muhammad in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons) Physics, in the Faculty of Applied Science, and was approved by

Dr Ang Lee Sin Supervisor B.SC. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr Siti Zulaikha Mohd Yusof Project Coordinator B.SC. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr Rosyaini Affindi Zaman Programme Coordinator B.SC. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

25 JULY 2025

ABSTRACT

Theoretical Investigation on the Effect of Cluster Size and Level of Density Functionals in Bonding: Case Study on Glycine and Cytidine

This research investigated the theoretical calculation of the electron density for glycine and cytidine system using Density Functional Theory (DFT). This is because DFT offers a good balance between computational cost and accuracy for studying electron density distribution. The structure of glycine and cytidine was constructed using GaussView from a CIF file obtained from Hara et al. (2024). Topological analyses were performed using the Multiwfn program to identify bond critical points (BCPs) and compute |V_{BCP}|/G_{BCP}, and Vesta was used to visualise the electron density distribution. The result showed that the C-N, C-C and C-H bonds were covalent with high |V_{BCP}|/G_{BCP} ratios (>2). The Valence Electron Density (VED) plots resembled the experimental curves more closely. The findings showed that the cluster size of neighbouring molecules have an impact on electron distributions, thus fulfilling the first objective. Although the two functionals used, APFD/def2tzvp and LC-BLYP/cc-pVTZ displayed similar bonding trends, LC-BLYP/cc-pVTZ results was slightly better in terms of long-range interactions, achieving the second objective. In conclusion, it has been shown in paper that cluster size does indeed influence the bonding interactions and electron density.

TABLE OF CONTENTS

ACK	NOWLEDGEMENTS	V	
ABST	TRACT	iii	
ABST	TRAK	iv	
TABI	vi		
LIST	viii		
LIST	T OF FIGURES	ix	
LIST	T OF ABBREVIATIONS	xi	
CHA	APTER 1 INTRODUCTION	1	
1.1	Background of Study	1	
1.2	Problem Statement	2	
1.3	Research Questions	3	
1.4	Objective of the Study	4	
1.5	Significance of the Study	4	
1.6	Limitations of the Study	5	
CHA	APTER 2 LITERATURE REVIEW	6	
2.1	Electron Density	6	
2.2	Density Functional Theory	7	
	2.2.1 Level of Theory in DFT	10	
	2.2.2 Basis Sets of DFT	13	
2.3	Previous Study of Cases of Glycine and Cytidine	14	
CHA	APTER 3 METHODOLOGY	16	
3.1	Introduction	16	
3.2	Structure of Glycine and Cytidine		
3.3	Calculations and Analyses	19	
	3.3.1 Critical Point Analysis	20	
	3.3.2 Electron Density Analysis	21	

	3.3.3	Valence Electron Density in Glycine Analysis	21
3.4	Flow	Chart	22
СНАЕ	PTER 4 I	RESULT AND DISCUSSION	23
4.1	Introd	uction	23
4.2	2 Bond Critical Point		
	4.2.1	Glycine Monomer and Dimer	24
	4.2.2	Cytidine Monomer and Dimer	27
4.3	Electi	30	
	4.3.1	Electron Density of Glycine	31
	4.3.2	Electron Density in Cytidine	33
4.4	Valen	35	
	4.4.1	Valence Electron Density in C1-C2 Atoms	36
	4.4.2	Valence Electron Density in C2-O1 Atoms	38
	4.4.3	Valence Electron Density in C2-O2 Atoms	39
	4.4.4	Valence Electron Density in C1-N3 Atoms	41
	4.4.5	Valence Electron Density in C-H Atoms	43
СНАЕ	PTER 5 (CONCLUSION AND RECOMMENDATION	45
5.1	Introd	luction	45
5.2	Conclusion		46
5.2	Recommendation		47
REFE	RENCES	8	49
APPENDICES			
CURRICULUM VITAE			