

ASSESSING THE DENGUE VECTOR BREEDING CHARACTERISTICS IN SIBU DISTRICT, SARAWAK, MALAYSIA USING CLUSTER ANALYSIS

ANGELA JESSICA NICHOLAS

Project submitted in fulfillment of the requirements for the degree of Bachelor of Environmental Health and Safety (Hons.)

Faculty of Health Sciences

January 2021

ACKNOWLEDGEMENT

First and foremost, I would like to express my thanks and gratitude to my beloved parent Mr Nicholas Bamphield and my siblings for their countless support throughout the completion of this study. My deepest gratitude and appreciation to my dearest supervisor, Prof. Madya Nazri Che Dom who spent his wonderful time and efforts in guiding and advising from the beginning till the end of my research journey. I would like to express my gratitude to all the lecturers in Department of Environmental Health and Safety, Faculty of Health Sciences who always share their insightful knowledge and relevant information related to the research study.

My sincere thanks as well goes to my friends who contributed directly and indirectly for helping, giving me a full motivation and support throughout this study. May God bless you all with abundance of grace and wonderful blessings. Thank you.

TABLE OF CONTENTS

TIT	LE PAG	SE .	
DECLARATION BY STUDENT			
INTELLECTUAL PROPERTIES			ii
APPROVAL BY SUPERVISOR			ii
ACKNOWLEDGEMENT			
TABLE OF CONTENTS			vi
LIST OF TABLES			iii
LIST OF FIGURES			
LIST OF ABBREVIATIONS			X
ABSTRACT			xi
ABSTRAK			xii
CHAPTER ONE: INTRODUCTION			1
1.1	Ba	ackground of study	1
1.2	Pro	Problem statement 3	
1.3	Sig	Significance of study 5	
1.4	Ob	pjectives	6
	1.4.1	General objective	6
	1.4.2	Specific objectives	6
1.5		Conceptual framework	7
CHAPTER TWO: LITERATURE REVIEW			
2.1	Ba	ackground	9

ABSTRACT

Dengue fever that are caused by dengue virus has currently emerged as one of the major threats to public health in Malaysia. The incriminated vector species for the diseases were caused by Ae. aegypti and Ae. albopictus. This study was initiated to determine the effect of size of breeding containers that contribute towards the development of Aedes immature abundance in urban residential areas in Sibu District, Sarawak, Malaysia. The study areas were divided into high-risk areas and low-risk areas. Therefore, cluster analysis was utilized by using self-organizing map (SOM) to visualize, partitioning and mapping the Aedes immature abundance in relation with different size capacity of the containers in the selected areas. In addition, limited studies were conducted to explore and visualize the multi-variable data by using SOM technique toward dengue vector abundance. Accordingly, majority of the studies have proposed the distribution pattern of the dengue vector abundance based on statistical analyses. For statistical analyses such as Chi-Square and Kruskal-Wallis test were also done to evaluate the abundance pattern of potential breeding containers in relation with the prevalence of *Aedes* immature stages. Based from the results, the Chi-Square indicated that there was statistical difference between the number of potential breeding containers and size (p < 0.05). The Kruskal-Wallis test indicated that there were no statistically significant associations were found among both of the study areas (p > 0.05) for Ae. aegypti and Ae. albopictus in the number of breeding abundance. The results from the unsupervised clustering techniques indicated that Ae. albopictus contributed strongly to the Aedes mosquito abundance for both areas identified in Sibu District, Sarawak. The abundance of the Aedes immature stages mainly occur in the class of large containers in low-risk areas whereas for high-risk areas, in the class of small containers for both species identified. The findings indicated a need to take action by eliminating the breeding containers which subsequently reducing the distribution of the Aedes immature stages for dengue control efforts and preventing dengue fever.

Keywords: Vector abundance, dengue, Malaysia.

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

Dengue fever has currently emerged dramatically as one of the major public health problems in Malaysia. In Malaysia, the disease is endemic and primarily occurs in urban and suburban areas. Dengue fever (DF) and dengue haemorrhagic fever (DHF) are caused by dengue virus in which consists of four serotypes (DEN 1, DEN 2, DEN 3 and DEN 4) and belonging to genus Flavivirus that are transmitted to human by *Aedes* mosquitoes (Gubler, 1997). *Aedes aegypti* and *Aedes albopictus* are two incriminated mosquito species that transmitting the dengue virus (Rudnick, 1965). Walsh *et al.*, (2011) stated that these mosquitoes feed preferably on human blood through the bites of infected female mosquitoes. The widespread distribution of the dengue fever is closely associated to the circulation of the dengue viruses between dengue vector abundance and human-vector contact transmission (Lau *et al.*, 2013).

Vector abundance is defined as any measure of the number of vectors per sample collected in a known and standardized manner during a year at some point (European Centre for Disease Prevention and Control, 2018). In general, the major factors that contribute to dengue vector abundance are based on their breeding characteristics, limited nutrient concentration, density competition and climate and season change. Breeding characteristics such as size of the breeding containers are a major source that highly related to dengue vector abundance. The increase of the dengue vector abundance is influenced by the high availability of potential larval