Chapter 23:

System Downtime in Financial Accounting: Challenges and Strategic Solutions

Nur Asniah binti Mohd Ashri, Wan Noraswaniaty binti Wan Ahmad

Faculty of Accountancy, UiTM Cawangan Kelantan

waniaty@uitm.edu.my

ABSTRACT

The reliability of financial accounting systems is important as to ensure the accurateness of transaction processing, compliance with regulatory requirement, and meeting the timely reporting. However, as organizations become increasingly more relying on digital tools, they are more expose to system downtime. System downtime can interrupt financial operations and create substantial challenges. This study examines the impact of system downtime on financial accounting, aiming on its effects on productivity, financial stability, and workforce efficiency. It looks into several key challenges, including operational disruptions, financial losses, and increased error rates. Additionally, this study suggests and discusses some effective mitigation strategies, such as implementing automation in backup systems, improving employee training, and ensuring routine and schedule system maintenance. By strengthening IT resilience, financial institutions can minimalize risks related with financial inaccuracies and regulatory non-compliance, ensuring the steadiness and reliability of their accounting systems in an increasingly digital financial landscape.

Key Words: System Downtime, Financial Accounting, Challenges, Strategies

1. INTRODUCTION

Nowadays, accounting practices profoundly rely on digital solutions such as systems and software to handle, record, and report financial data. These technological tools are needed in maintaining the accurateness of financial reporting, effectiveness in day-to-day operations, and compliance with regulatory obligations. As organizations increasingly depend on digital tools for financial transactions and reporting, any interruption can lead to substantial operational and financial disruptions (Varma & Singh, 2024). System downtime, in particular, causes a significant threat to the accuracy and reliability of financial accounting systems. Unplanned outages, resulting from hardware malfunctions, software glitches, or cyberattacks, can interrupt the seamless flow of financial data (Allen, 2023), resulting in inaccuracies in financial statements and potential regulatory noncompliance.

Globally, the financial sector has witnessed several incidences highlighting the severity of system downtime. For instance, in early 2025, Barclays experienced a three-day IT outage that impacted over half of its payment transactions. This interruption not only inconvenienced millions of customers but also required the bank to allocate up to £7.5 million in compensation (Emanuel-Burns, 2025). Likewise, Santander encountered a considerable outage that caused customers unable to process online or card payments, highlighting the broader vulnerabilities within financial system (Flanders, 2025).

In emerging economies, the effect of system downtime can be even more severe due to less robust IT infrastructures and inadequate resources for instant recovery. These interruptions can impede financial inclusion efforts and weaken the growing reliance on digital financial services. Many developing nations have embraced fintech solutions to enhance financial inclusion and economic development. However, the absence of resilient IT infrastructure, inadequate cybersecurity capabilities, and unreliable power supply make these systems exposed to disruptions (Abdelkader et al., 2024).

(ACCOUNTING INSIGHT COMPILATION BOOKS)

For instance, in 2023, a noteworthy banking system failure in India caused millions not able to process digital payments, exposing the risks associated with an overreliance on digital financial services without adequate backup mechanisms (Dugas et al., 2024). Similarly, Indonesia faced a surge in cyberattacks targeting its financial institutions, leading to prolonged downtimes and disturbances in financial reporting (Chakravarti, 2023). These challenges stress the urgent need for stronger disaster recovery strategies and enhanced regulatory control in emerging markets.

In Malaysia, system downtime remains a growing concern due to the country's accelerating digital transformation in financial services. While Malaysia has made considerable progress in fintech adoption and digital banking, challenges persist. In recent years, several major financial institutions have reported unplanned IT outages, disrupting online banking transactions and financial reporting processes. For example, a 2024 system failure at a leading Malaysian bank caused delayed in payroll processing and erroneous financial data entries, creating operational inefficiencies and reputational risks (Bank Negara Malaysia, 2025). Additionally, Malaysia's reliance on data centers for cloud-based financial systems has raised concerns about power supply stability and cybersecurity threats, further highlighting the need of robust risk management frameworks (Arifin et al., 2024).

Therefore, this study aims to examine the impact of system downtime on financial accounting by analysing its effects on productivity, financial stability, and workforce efficiency. It seeks to identify the challenges organizations face, including operational disruptions, financial losses, and increased errors due to system failures. Additionally, the study aims to suggest effective mitigation strategies, such as implementing automated backup systems, enhancing employee training, and ensuring regular system maintenance to improve the reliability of financial accounting systems. By addressing these challenges, organizations can improve their IT infrastructure and minimize the risks associated with financial inaccuracies and compliance failures.

2. LITERATURE REVIEW

Downtime is best described as a period in which a system, device, or application of core services, both internal and external, are unavailable or idle for a certain amount of time due to maintenance, safety precautions, updates, or even unexpected outages. System downtime, or the times when a particular system does not work properly, is a prevalent issue that many organizations need to deal with. This obstruction appears to be technical, yet it affects financial accounting procedures in a big manner. In accounting, system downtime can have severe consequences, as most financial processes and reporting are heavily relying on technology. Whether it is payroll, tax filings, or month-end close activities, any disruption in accounting systems can lead to financial losses, compliance risks, and operational delays.

The reliability of financial accounting systems depends on continual access to data and real-time processing capabilities. Technical failures, cyberattacks, or infrastructure deficiencies, that happened due to system failures, can lead to significant interruptions in financial transactions and reporting (Admass, 2024). The unexpected downtimes can cause discrepancies in financial records, delays in financial statement preparation, and increased risks of non-compliance with reporting standards (Youvan, 2024). Furthermore, research highlights that organizations experiencing frequent system failures tend to face operational inefficiencies, loss of stakeholder confidence, and potential financial penalties due to regulatory breaches (Mesioye & Bakare, 2024).

Organizations are more vulnerable to system failures when they are profoundly relying on digital financial systems. Cloud-based accounting software and real-time transaction processing systems are significant for modern financial management, but they also bring risks related to data accessibility and cybersecurity (Atadoga et al., 2024). Additionally, organizations that rely on cloud-based financial solutions without having adequate backup systems are more vulnerable to extended downtime and data loss (Tatineni, 2023). Besides, fintech adoption in emerging economies has enhanced the transition toward digital financial services, however the insufficient IT infrastructure and weak cybersecurity measures often lead to prolonged system outages (Jameaba, 2020).

In Malaysia, guidelines that requiring financial institutions to implement robust IT risk management frameworks has been established by Bank Negara Malaysia (BNM) (Chia et al., 2018). Regulatory compliance is important to mitigate the risks related with system failures. Non-compliance, whether intentionally or accidentally, can expose organizations to awful consequences such as financial penalties and reputational damage (Noah et al., 2024). Furthermore, previous research has revealed that regulatory frameworks in developing economies often lack the enforcement mechanisms necessary to ensure that financial institutions maintain high levels of IT resilience (Jayasundara & Wickramarachchi, 2024; Walter, 2019).

(ACCOUNTING INSIGHT COMPILATION BOOKS)

Previous literature emphasizes the imposing impact of system downtime on financial accounting, specifically in the areas of data integrity, operational efficiency, and regulatory compliance. System downtime remains a persistent issue that interrupts financial operations, leading to significant challenges in productivity, financial stability, and workforce efficiency. Understanding these challenges is essential to developing effective mitigation strategies.

3. DISCUSSION

System downtime can have far-reaching consequences for financial institutions, particularly in areas where real-time access to financial data and transaction processing are critical. When IT failures occurred, day-to-day operations disrupted and also impacted on the smooth preparation of financial reporting, regulatory compliance, and overall organizational performance. This section discusses the key challenges posed by system failures, starting with their impact on productivity, followed by financial losses and compliance issues, and lastly, its effect on employee morale and error rates.

Halting Productivity

One of the most immediate and severe consequences of system downtime is its ability to bring financial operations to a standstill. In a sector where real-time data access and continuous transaction processing are essential, even brief IT disruptions can result in delayed financial reporting, stalled business operations, and reduced service availability for clients.

When accounting systems experience downtime, it creates significant disruptions to productivity by preventing accountants from performing critical tasks. They lose access to essential financial data, cannot process transactions, and are unable to generate reports (Renaldo, 2022). These tasks are crucial for day-to-day operations and for ensuring the accuracy and timeliness of financial records.

For instance, preparing financial statements and reconciling accounts are time-sensitive tasks that often depend on the seamless operation of accounting systems. A system failure during these processes, particularly during the month-end closing, can delay the completion of reports. This results in missed deadlines, which can lead to negative perceptions among stakeholders, including clients, investors, and regulatory bodies (Thomas, 2025). Such delays might also affect internal decision-making, as management relies on up-to-date financial data to guide strategic planning.

In Malaysia, small and medium-sized enterprises (SMEs) facing distinctive challenges when implementing and maintaining the use of accounting software. These businesses often have problems with limited budgets and lack of technical expertise, which makes them more vulnerable to productivity losses during system downtime and significantly impact SMEs' efficiency (Molete et al., 2025; Nasirinejad et al., 2025). This reinforces the requirement for robust and reliable accounting systems corresponded to the needs of Malaysian businesses.

Financial Losses and Compliance Issues

Downtime does not only halt operations but can also lead to significant financial losses. When accounting systems are offline, businesses may find it difficult or impossible to invoice customers or process payments. This results in immediate cash flow disruptions, as income is delayed and payments to suppliers or other stakeholders may be affected (Renaldo, 2022). Over time, these disruptions can strain business relationships and erode trust with clients and partners.

For Malaysian businesses, the stakes are even higher in industries with strict regulatory requirements. Tax compliance, for example, is a critical area that depends heavily on the smooth operation of accounting systems. A system outage during tax submission periods can result in late filings, leading to penalties from the Inland Revenue Board (LHDN). These penalties not only add to the financial burden but also damage the business's reputation with regulatory authorities (Mesioye & Bakare, 2024).

A prominent example in Malaysia involved service disruptions experienced by Maybank and CIMB, two of the country's largest banks (Bank Negara Malaysia, 2025). Prolonged system downtime led to interrupted customer transactions, causing financial losses and inconveniences (Renaldo, 2022). As a result, Bank Negara Malaysia (BNM) imposed fines on both banks, highlighting the regulatory and reputational risks associated with downtime. This case highlights even large, well-resourced organizations are not immune to the consequences of system failures.

Decreased Morale and Increased Errors

System downtime also has a human cost, as it directly affects the motivatio among the accounting teams. Frequent disruptions leading to frustration, especially during high-pressure periods like audit preparation, or

(ACCOUNTING INSIGHT COMPILATION BOOKS)

month-end closings (Zaki, 2022). Accountants working under tight schedules and deadlines may feel demoralized when they cannot perform their duties efficiently due to system failures.

This frustration often leads to job dissatisfaction and may cause long-term disengagement. Employees who are not satisfied and unhappy with unreliable systems may become demotivated to maintain high performance, impacting the overall productivity of the accounting department (Connors, 2023). Then when the systems are restored after downtime, there is often a rush to make up for lost time. This hurried approach increases the probability of errors in financial records, such as inaccuracies in reconciliations, delayed filings, or misstatements in financial reports.

In Malaysia, studies on IT adoption among SMEs have shown that unresolved technical issues can significantly affect employee satisfaction and performance. For example, businesses that fail to provide adequate support for system-related challenges risk not only lower efficiency but also higher employee turnover (Arifin et al., 2024). This highlights the importance of investing in reliable systems and ensuring access to proactive technical support to maintain team morale and prevent costly errors.

4. RECOMMENDATION

Implement Automated Backup Systems and Redundancy Solutions

Establishing automated backup systems and redundancy solutions is a critical first step in ensuring business continuity during system downtime. Automated backup involves scheduling regular intervals to securely save financial data such as transaction records, payroll details, financial statements, and invoices (Tatineni, 2023). This approach ensures that, in the event of a system failure caused by hardware malfunctions, cyberattacks, or power outages, businesses can swiftly recover essential data with minimal disruptions.

Redundancy solutions, such as cloud-based storage or mirrored servers, provide an alternative operational platform that can be activated immediately if the primary system goes offline. For example, cloud platforms offer secure and scalable solutions, ensuring continuous access to financial data even during localized technical failures (Atadoga et al., 2024). Businesses in Malaysia, especially SMEs, can take advantage of cloud solutions offered by providers which specialize in secure data storage and backup. This dual-layered approach significantly minimizes the risk of data loss and ensures that operations can resume seamlessly.

Failing to implement such measures may result in significant downtime, leading to delayed financial reporting, cash flow disruptions, and compliance penalties. By proactively investing in automated backups and redundancy solutions, organizations not only safeguard their financial data but also reinforce their resilience against unforeseen technical disruptions.

Provide Regular Employee Training

Well-trained employees are crucial for minimizing the operational impact of system downtime. Regular training equips staff with the knowledge and skills required to effectively manage disruptions. Training sessions should focus on basic troubleshooting techniques, data recovery procedures, and the use of backup systems (Renaldo, 2022). This ensures that employees can respond quickly to technical failures, reducing operational delays.

For example, accountants should be trained to recognize and address common system issues, such as error codes or connectivity failures, and to follow documented protocols for escalating more complex problems. In addition to technical skills, training should include stress high-pressure periods, such as tax filings or audit preparations, when downtime can exacerbate stress.

Organizations like the Malaysian Institute of Accountants (MIA) offer Continuing Professional Education (CPE) programs tailored to the needs of accounting professionals. These programs not only enhance participants' technical capabilities but also instil confidence in managing systems disruptions effectively. This approach not only ensures smoother business operations during outages but also improves employee morale and job satisfaction by empowering staff with the tools to overcome technical challenges.

Conduct Routine System Maintenance and Updates

Routine maintenance and timely updates of accounting systems are critical to preventing vulnerabilities that could lead to system failures. Outdated hardware and software are often ill-equipped to handle modern security threats or increased data loads, making them susceptible to crashes or breaches. Regular maintenance helps identify and address performance issues before they escalate into significant problems.

This involves monitoring system performance, conducting periodic software updates, and replacing outdated hardware components as needed (Abdelkader et al., 2024). For example, updating antivirus software and installing patches ensures that systems remain protected against the latest cyber threats. Engaging with

(ACCOUNTING INSIGHT COMPILATION BOOKS)

reputable IT service providers can help organizations maintain optimal system performance. These providers offer comprehensive maintenance services, including security audits, system diagnostics, and preventive measures to ensure seamless operations.

Proactively maintaining systems reduces the likelihood of prolonged downtime, enhances system reliability, and builds trust among stakeholders by demonstrating a commitment to operational excellence (Admass, 2024). Additionally, staying current with technology trends enables businesses to adopt innovative solutions that further improve efficiency and security in financial accounting.

By implementing automated backup systems, providing regular employee training, and conducting routine system maintenance, businesses can significantly mitigate the risks associated with system downtime (Dugas et al., 2024). These strategies not only protect critical financial data but also ensure smoother operations during disruptions, improve employee preparedness, and build resilience against future challenges. Prioritizing these proactive measures ultimately enhances organizational stability, minimizes financial losses, and safeguards the trust of clients, stakeholders, and regulatory bodies.

5. CONCLUSION

System downtime is a critical challenge in the field of financial accounting, disrupting productivity, causing financial losses, and impacting compliance and employee morale. As businesses increasingly rely on technology to manage financial processes, the effects of downtime are becoming more significant, often leading to delayed operations, strained client relationships, and reputational damage.

This report highlights the multifaceted nature of system downtime, demonstrating its impact across various aspects of financial accounting. When systems fail, businesses face interruptions in accessing and processing critical data, causing delays in tasks like financial reporting and account reconciliations. These delays can lead to missed deadlines, financial penalties, and compliance breaches, especially in industries with strict regulatory requirements. Additionally, the human cost of downtime, including frustration and reduced efficiency among accounting teams, further compounds the issue.

To mitigate these challenges, adopting proactive measures is essential. Implementing automated backup systems and redundancy solutions ensures business continuity and data protection during outages. Regular employee training equips staff with the skills to handle technical disruptions effectively, minimizing operational delays. Routine system maintenance and updates address vulnerabilities, reducing the likelihood of future failures.

By embracing these recommendations, businesses can enhance the reliability and resilience of their accounting systems. These efforts not only reduce the risks associated with downtime but also support long-term organizational stability, improved operational efficiency, and stronger stakeholder confidence. Investing in robust systems and preparedness strategies is critical to ensuring financial accuracy, maintaining compliance, and achieving sustainable growth in today's technology-driven business environment.

REFERENCES

Abdelkader, S., Amissah, J., Kinga, S., Mugerwa, G., Emmanuel, E., Mansour, D. E. A., & Prokop, L. (2024). Securing modern power systems: Implementing comprehensive strategies to enhance resilience and reliability against cyber-attacks. *Results in Engineering*, 102647. https://doi.org/10.1016/j.rineng.2024.102647

Admass, W. S., Munaye, Y. Y., & Diro, A. A. (2024). Cyber security: State of the art, challenges and future directions. *Cyber Security and Applications*, 2, 100031. https://doi.org/10.1016/j.csa.2023.100031

Allen, H. J. (2023). Reinventing operational risk regulation for a world of climate change, cyberattacks, and tech glitches. *J. Corp. L., 49,* 727.

Arifin, M. S. M., Rosman, M. R. M., Radzi, S. M., Nawi, N. A. M. M., & Alimin, N. A. (2024). Information security behavior among Malaysian SMEs: Phishing, cybersecurity incident, human factors and risk mitigation. *Journal of Islamic*, 9(66), 640-650. https://doi.org/10.55573/JISED.096652

Atadoga, A., Umoga, U. J., Lottu, O. A., & Sodiya, E. O. (2024). Evaluating the impact of cloud computing on accounting firms: A review of efficiency, scalability, and data security. *Global Journal of Engineering and Technology Advances*, 18(2), 065-074. https://doi.org/10.30574/gjeta.2024.18.2.0027

(ACCOUNTING INSIGHT COMPILATION BOOKS)

Bank Negara Malaysia, (2025). *BNM Fines Maybank, RHB, AmBank RM2.5 Million for Non-Compliance*. FinTech Malaysia. https://fintechnews.my/47909/banking/bnm-fines-maybank-rhb-ambank-rm2-5-million-for-non-compliance/

Chakravarti, J. (2023, August). *Indonesia hardest hit by cyberattacks in the region*. Bank Info Security. https://www.bankinfosecurity.asia/indonesia-hardest-hit-by-cyberattacks-in-region-a-22720

Chia, B., Wong, S. W., & Kan, S. (2018, October). *Bank Negara Malaysia issues exposure draft of risk management in technology.* Wong & Partners. https://www.wongpartners.com/publications/-/media/minisites/wongpartners/files/publications/2018/10/al banknegaramalaysiaissues oct2018.pdf

Connors, J. (2023). A study of burnout in certified public accountants in the southeast region of the United States. Masters Theses and Doctoral Dissertations. https://scholar.utc.edu/theses/800

Dugas, P., Spicer. K., & Harding, B (2024, April). *Lessons from 2023's bank failures: Focus on risk management.* Capco. https://www.capco.com/intelligence/capco-intelligence/lessons-from-2023s-bank-failures

Emanuel-Burns, C. (2025, March). *Barclays set to pay out millions in customer compensation after IT outage*. FinTech Future. https://www.fintechfutures.com/2025/03/barclays-set-to-pay-out-millions-in-customer-compensation-after-it-outage/

Flanders, J. (2025, March). Santander banking down as customers unable to make online or card payments as banks slammed for IT failures. The Sun. https://www.thesun.co.uk/money/33715362/santander-banking-down-customers-online-card-payments/

Jameaba, M. S. (2020). Digitization revolution, FinTech disruption, and financial stability: Using the case of Indonesian banking ecosystem to highlight wide-ranging digitization opportunities and major challenges. https://dx.doi.org/10.2139/ssrn.3529924

Jayasundara, H., & Wickramarachchi, A. P. R. (2024). Critical factors affecting digital resilience in the Sri Lankan banking sector: a systematic review. *Journal of Science of the University of Kelaniya*, 17(2). https://doi.org/10.4038/josuk.v17i2.8126

Mesioye, O., & Bakare, I. A. (2024). Evaluating financial reporting quality: Metrics, challenges, and impact on decision-making. *Int J Res Public Rev, 5*(10), 1144-1156. http://dx.doi.org/10.55248/gengpi.5.1024.2735

Molete, O. B., Mokhele, S. E., Ntombela, S. D., & Thango, B. A. (2025). The impact of IT strategic planning process on SME performance: A systematic review. *Businesses*, *5*(1), 2.

Nasirinejad, M., Afshari, H., & Sampalli, S. (2025). Empowering SMEs in the Fourth Industrial Revolution: A framework for maintenance 4.0 adoption. *Procedia Computer Science*, 253, 1382-1391. https://doi.org/10.1016/j.procs.2025.01.200

Noah, A., Moon, L., & John, A. (2024). The consequences of non-compliance with data protection regulations on business analytics.

Renaldo, N. (2022). Benefits and challenges of technology and information systems on performance. *Journal of Applied Business and Technology, 3*(3), 302-305. https://doi.org/10.35145/jabt.v3i3.114

Tatineni, S. (2023). Cloud-based business continuity and disaster recovery strategies. International Research *Journal of Modernization in Engineering, Technology, and Science, 5*(11), 1389-1397. https://www.doi.org/10.56726/IRJMETS46236

Thomas, B.S. (2025). *Limiting the cost of downtime: Why monitoring should be a boardroom priority*. Manahe Engine. https://www.site24x7.com/blog/the-cost-of-downtime

Varma, A., & Singh, T. (2024). Finance Transformation: Leadership on Digital Transformation and Disruptive Innovation. CRC Press.

Walter, A. (2019). Emerging countries in global financial standard setting: explaining relative resilience and its implications. Special report of Centre for International Governance Innovation.

(ACCOUNTING INSIGHT COMPILATION BOOKS)

Youvan, D. C. (2024). Anatomy of a financial collapse: The role of technical glitches in modern financial systems. $\frac{\text{http://dx.doi.org/10.13140/RG.2.2.33681.65121}}{\text{http://dx.doi.org/10.13140/RG.2.2.33681.65121}}$

Zaki, A. (2022, October). 38% of Accountants with harmonious use of technology have low burnout. Informa. https://www.cfo.com/news/38-of-accountants-with-harmonious-use-of-technology-have-low-burnout/654862/