UNIVERSITI TEKNOLOGI MARA

LARVICIDAL POTENTIAL FROM THE MIXTURE OF Allium sativum (GARLIC) AND Piper nigrum (BLACK PEPPER) AGAINST MOSQUITOES

MUHAMMAD DANIEL BIN AHMAD NUR INSYIRAH BINTI AHMAD DAHARI FARAH ASYIKIN BINTI HUSHAIRI

Project submitted in fulfilment of the requirements for the degree of

Bachelor in Environmental Health and Safety

(Hons.)

Faculty of Health Sciences

JULY 2020

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious, The Most Merciful.

Assalamualaikum and Alhamdulillah, all praise to Allah S.W.T The Supreme Lord of the Universe. Peace and blessing to Nabi Muhammad S.A.W., all prophets and their families. We praise Allah S.W.T. for the strength and His blessings in completing our study.

Thousands of thanks and love to our parents and families for their fully support and encouragement throughout the journey. Our deepest gratitude and appreciation to both of our supervisor, Haji Mohd Pozi Bin Mohd Tahir and Dr Muhammad Afiq Zaki who spent their time and efforts in guiding and advising from the beginning till the end of our research journey. We also wish to extend our special thanks to all the lecturers in Department of Environmental Health and Safety, Faculty of Health Sciences who always share their thoughts, knowledge and advice throughout our study in UiTM Puncak Alam.

Besides that, our sincere thanks and appreciation goes to all the staff from the department and laboratory who gave their full cooperation and assistance in many ways throughout the study. A special thanks to our friends from HS243 who always give support and motivation while completing the research. Thanks for the friendships and memories. Last but not least, we would like to thank everyone who involved directly and indirectly throughout completing this study. Thank you very much.

TABLE OF CONTENTS

TITLE PAGE		
DECLARATION BY STUDENT		ii
INTELLECTUAL PROPERTIES		v
APPROVAL BY SUPERVISOR		xi
ACKNOWLEDGEMENT		xii
TABLE OF CONTENTS		xiii
LIST OF TABLES		xviii
LIST OF FIGURES		xx
LIST OF ABBREVIATIONS		xxii
ABSTRACT		xxiii
ABSTRAK		xxiv
CHAPTER 1: INTRODUCTION		
1.1	Background of study	1
1.2	Problem statement	4
1.3	Objectives	7
1.3.1	General objective	7
1.3.2	Specific objectives	7
1.4	Study hypothesis	7
1.5	Study limitations	8
1.6	Significance of study	8
1.7	Conceptual framework	11

ABSTRACT

Mosquito-transmitted pathogens cause major public health problems and contribute substantially to the global burden of disease. For many years, chemical synthetic insectide are used to vector control intervention. Continuous exposure of chemical synthetic insecticide has induce resistance of the mosquitoes, rendering it to be useless. Excessive usage of synthetic insecticides has also proven to cause biological control systems disruption as it leads to the development of insecticides resistance among the mosquito species. This concern urges to find an environment friendly, cost-effective and biodegradable insecticides against mosquitoes in order to tackle the obstacles on the effectiveness of vector control intervention. Hence, this study is important to expand the bio-insecticide alternatives against 3 different mosquito species based on the active component present in Piper nigrum (Black pepper) & Allium sativum (Garlic). The method included field collection of the mosquito eggs, rearing of mosquitoes, plant extraction using Soxhlet apparatus and Rotary Evaporator, phytochemical screening and larval rearing for larvicidal bioassay test to determine the lethal concentration (LC50 and LC90). The phytochemical screening of the plants mixture showed the positive detection of flavonoids, tannins, phenols and terpenoids. The plant mixture has higher potency on the lab mosquito species compared to the wild mosquito species. As for the comparison for the 3 different mosquito species, the plant mixture is most effective towards Aedes aegypti followed by Culex species and lastly, Aedes albopictus. Further studies should be carried out to optimize the potential insectide abilities of these plants extract combination. Furthermore, other plants with larvicidal potential should be explored and studied to maximize the use of natural resources as effective larvicide.

Keywords: Aedes aegypti, Aedes albopictus, Culex species, Allium sativum, Piper nigrum, Larvicide, Phytochemical screening

CHAPTER 1

INTRODUCTION

1.1 Background of study

For decades, presence of mosquitoes in human population have been reported as it become nuisances due to its biting characteristics. However, it is reported that mosquitoes can carry and transmit the vector-borne diseases like dengue fever, malaria, chikungunya, filariasis and other diseases (Tolle, 2009; Caraballo & King, 2014; Aziz et al., 2016 & Pavela et al., 2019) which threaten the human life. Shockingly, the arthropod-borne diseases reported has reached an alarming rate as there are approximately 700,000,000 infected cases (Caraballo and King, 2014) where highly reported among Indian population which are 40,000,000 (Ghosh et al., 2012). This is occurring due to its existence that mainly found in almost all tropical and subtropical countries including Malaysia (Ghosh et al., 2012) and also in some developed and temperate regions like Europe and Asia Pacific countries (Fradin, 1998).

The first reported mosquito-borne diseases in Malaysia is the malaria incidence as it reported before 1900s and documented in 1990 with the higher situation of malaria cases (Ministry of Health (MOH), 2014). Then, the first dengue case is reported in Penang on 1902 (Skae, 1902), followed by major outbreak in 1970 (Aziz et al., 2016). Moreover, Malaysia also be shocked with the first chikungunya virus infection in 1998 in Selangor with largest outbreak in 2008 until 2010 which affect the entire country (Sam et al., 2009). Furthermore, the first Japanese encephalitis case is reported in 1951 (Cruickshank, 1951) which cause viral infection in humans that also be found among domestic animals like bovines, goats and dogs (Pond et al., 1954).