ELECTRICAL TRANSPORT ANALYSIS OF Cr^{3+} SUBSTITUTION AT THE Mn SITE OF DIVALENT-DOPED La_{0.5}Ca_{0.5}Mn_{1-x}Cr_xO₃ (x = 0, 0.03, 0.05) MANGANITE USING SCATTERING AND HOPPING MODELS

MOHAMMAD AIDIL IKHWAN BIN ZULKIFLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2025

This Final Year Project Report entitled "Electrical transport analysis of Cr^{3+} substitution at the Mn site of divalent-doped La_{0.5}Ca_{0.5}Mn_{1-x}Cr_xO₃ (x = 0, 0.03, 0.05) manganite using scattering and hopping models" was submitted by Mohammad Aidil Ikhwan Bin Zulkifli in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons) Physics, in the Faculty of Applied Science, and was approved by

Dr. Rozilah Rajmi Supervisor B. Sc (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Dr Siti Zulaikha Mohd Yusof Project Coordinator B. Sc (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis Dr Rosyaini Afindi Zaman Programme Coordinator B. Sc (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Date: 25 JULY 2025

ABSTRACT

Electrical transport analysis of Cr^{3+} substitution at the Mn site of divalent-doped $La_{0.5}Ca_{0.5}Mn_{1-x}Cr_xO_3$ (x = 0, 0.03, 0.05) manganite using scattering and hopping models

The study focusses on Cr^{3+} substitution at the Mn-site of divalent-doped La_{0.5}Ca_{0.5}Mn_{1-x}Cr_xO₃ (x = 0, 0.03, 0.05) on the electrical transport properties. The samples were successfully synthesised by the conventional solid-state reaction method. The resistivity behaviour over a wide temperature range was studied. The electron transport mechanism in metallic region (T<T_{MI}) was analysed using scattering model. The experimental data in the metallic region is best fitted with the scattering models $\rho = \rho_0 + \rho_2 T^2 + \rho_{4.5} T^{4.5}$ suggested scattering involving grain boundary, electron-electron, and electron-magnon interaction. The fitted value of the parameter was observed to be decrease upon increasing Cr^{3+} content. The resistivity in metallic area was observed to be lower at higher Cr^{3+} substitutions and this may be attributed to the formation of double exchange interaction of Mn³⁺-O-Cr³⁺ and Mn³⁺-O-Mn⁴⁺. The resistivity behaviour in the metallic region was dominated by the domain or grain boundary resistivity. In insulating region (T>T_{MI}), the small polaron hopping model

with equation $\rho(T) = BT \, e^{\frac{E_a}{K_BT}}$ was used to analyse the electron transport mechanism. The findings show that the presence of Cr^{3+} substitution enhances the activation energy resulted from enhanced Jahn-Teller lattice distortion, causes the polarons to localise. The combined findings show the complex competition between structural and electrical parameters in Cr-substituted manganites. These findings contribute to a deeper understanding of the transport phenomena in substituted manganite and their potential in electronic and spintronic applications.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ABSTRACT		iii
		iv v viii ix
ABSTI		
LIST (
LIST (
LIST (OF ABBREVIATION	xi
INTRO	DDUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Significance of study	5
LITER	RATURE REVIEW	6
2.1	Introduction of Manganite	6
	2.1.1 Crystal Structure	6
	2.1.2 Crystal Field Splitting	8
2.2	Unique Properties of Manganite	9
	2.2.1 Metal-Insulator Transition	9
2.3	Study on La _{1-x} Ca _x MnO ₃ Manganites	10
2.4	Factors Affecting Physical Properties of Manganite	13
	2.4.1 Charged Order	13
	2.4.2 Double Exchange	15
	2.4.3 Jahn-Teller Effect	17
	2.4.4 Substitution at Rare-Earth and Mn Sites	19
2.5	Electrical Transport Properties in Manganite	21
	2.5.1 Metallic Region	21
	2.5.2 Insulating Region	24
2.6	Applications of Manganite	26

RESEA	ARCH METHODOLOGY	28
3.1	Introduction	28
3.2	Sample Preparation	28
	3.2.1 Selection of Chemicals	28
	3.2.2 Composition of Chemicals	29
	3.2.3 Apparatus	30
	3.2.4 Equation and Calculation for Sample Preparation	30
	3.2.5 Description of Preparation of Samples	34
3.3	Sample Characterization	36
	3.3.1 Electrical Resistivity	36
3.4 E	Experimental Design / Flow Chart	39
RESUI	LT AND DISCUSSION	40
4.1	Introduction	40
4.2	Fitting model for Metallic Region	40
4.3	Fitting model for Insulating Region	47
4.4	Discussion	52
CONC	LUSION AND RECOMMENDATION	58
5.1	Introduction	58
5.2	Conclusion	58
5.3	Recommendation	59
REFERENCES		61
APPENDICES		66
CURRICULUM VITAE		73