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ARTICLE INFO ABSTRACT

Article history: Tuberculosis (TB) is an infectious disease caused by Mycobacterium
Received 10 August 2025 tuberculosis, which affects the lungs and other organs. In East Java,
Revised 3 September 2025 there were 87,048 TB cases, and only 53% of regions achieved the 90%
Accepted 16 September 2025 treatment success target. A major challenge in TB control is drug
Online first resistance, including Multidrug-Resistant Tuberculosis (MDR-TB).
Published 31 October 2025 Prevention is implemented through BCG vaccination, while treatment is

administered using anti-tuberculosis drugs. This research models the
spread of tuberculosis in East Java using two models, SVEITR (without

I,EeJéWO’" C{S" . resistance) and SVEITResR (with resistance), to analyse the pattern of
NFDIe{rc"ll“lBOSls disease spread based on data obtained from the East Java Provincial
SVEI:I"R Health Office. The basic reproductive number (R,) is calculated using

SVEITResR the next-generation method, and stability analysis is conducted at the
cs Disease-Free Equilibrium (DFE) and Endemic Equilibrium (EE) to test
Runge-Kutta the asymptotic stability of disease transmission The analysis of the
DOI- SVEITResR mathematical model (Ry= 1.0987) shows it has a lower
10.24191/mii v6i2.6245 basic reproduction number than the SVEITR model (Ry=1.3007.). Both
: - : models indicate that the spread of tuberculosis in the East Java region
has the potential to cause an outbreak. Numerical simulations using the
fourth-order Runge-Kutta method project a significant decrease in the
number of exposed individuals after 2024, while the number of infected
individuals is expected to increase until 2025 before reaching a stable
condition thereafter. Vaccination and first and second-line treatment
effectively reduce exposure to infection and increase cure rates over
time.

1. INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which infects the
respiratory tract and spreads through airborne droplets when a person coughs, sneezes or talks. It usually
begins with the lungs and can extend to the brain, skin, bones, and lymph nodes. If left untreated, TB
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weakens the immune system and may be fatal, making it a serious health problem with far-reaching impacts
(Rahmawati et al., 2024).

In 2023, Indonesia recorded the second-highest number of tuberculosis (TB) cases in the world after
India (1,060,000 cases and 134,000 deaths, about 10% of global cases) (World Health Organization, 2023).
One region in Indonesia that has drawn particular attention is the East Java Province, which recorded 87,048
cases up from 78,799 cases in 2022, with a low treatment success rate of 53% of districts not reaching the
90% treatment success target. Surabaya, Sidoarjo, and Jember are the areas with the highest cases,
dominated by men (56%) compared to women (44%), largely due to risk factors such as smoking and
alcohol use (Dinkes Jatim, 2023).

TB treatment success rates are assessed based on the percentage of patients who recover and complete
treatment. In 2023, the TB treatment success rate in Indonesia was recorded at 86.5%, below the 90% target
of the Ministry of Health. Complicated the resistance of Mycobacterium tuberculosis bacteria to anti-
tuberculosis drugs such as isoniazid and rifampicin caused irregular treatment, bacterial mutations, and
patient immunity (Kemenkes RI, 2023). This resistance will hamper treatment in cases of MDR-TB and
XDR-TB, which require more complex treatment with a higher risk of failure. Controlling TB, including
MDR-TB, requires a comprehensive approach such as administering the BCG vaccine to infants
(Vyawabhare et al., 2023). The spread of TB and the impact of MDR-TB in a population will be modelled
as an epidemiological mathematical model. This model simulates the spread of disease by considering
factors such as transmission rate, treatment effectiveness, vaccination, and drug resistance.

Classical epidemiological models SIR (Susceptible, Infected, Recovered) will analyse the dynamics
of the spread of TB disease by assuming that individuals infected with TB can recover directly (Ergen et
al., 2015). The SITR (Susceptible, Infected, Treatment, Recovered) model adds a treatment factor with the
assumption that infected individuals will receive treatment before recovering (Side et al., 2016). The SVEIL
(Susceptible, Vaccinated, Exposed, Infected, Latent) model adds the BCG vaccination factor for newborns
by demonstrating the effectiveness of vaccination and treatment in TB control (Mengistu & Witbooi, 2019).
The SEIResR (Susceptible, Exposed, Infected, Resistant, Recovered) model to analyse TB transmission
including MDR-TB cases due to incomplete treatment resulting in disease outbreaks and an increase in new
cases, hence the need for better control strategies (Ronoh et al., 2016).

This research aims to develop the previous epidemiological model of tuberculosis disease into the
SVEITResR (Susceptible, Vaccination, Exposed, Infected, Treatment, Resistant, Recovered) model. This
model adds the BCG vaccination component from the SVEIL model (Mengistu & Witbooi, 2019), the first-
line OAT treatment aspect (isoniazid and rifampicin) from the SITR model (Side et al., 2016), and the
concept of MDR-TB and the effectiveness of second-line OAT (fluoroquinolones and aminoglycosides)
from the SEIResR model (Ronoh et al., 2016). This development aims to analyse the dynamics of TB
spread, including MDR-TB cases, considering the effects of vaccination and various treatment strategies.

2. MATHEMATICAL MODEL OF EPIDEMIOLOGY

The epidemiological model analyses the spread of infectious diseases by dividing the population into
several sub-populations. The movement of populations depends on disease characteristics (Yong, 2020).
The SVEITR and SVEITResR epidemiological models are used to analyse tuberculosis spread under two
scenarios: with and without drug resistance. This research incorporates the effects of vaccination and
different treatments in controlling the spread of tuberculosis.

2.1 SVEITR Model

The SVEITR model for modelling TB spread in East Java considers the effectiveness of BCG
vaccination in infants as an early preventive measure and first-line treatment using anti-tuberculosis drugs.
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Fig. 1. SVEITR epidemic-model compartment

Based on the compartment diagram in Fig. 1, the SVEITR tuberculosis epidemic model is expressed
mathematically as follows:
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Research data and parameter values were obtained from the East Java Provincial Health Office,
including the number of individuals with various TB infection statuses as mortality data, total population
deaths, and deaths due to TB in various sub-populations. The parameters of the mathematical model are
described in Table 1.

Table 1. Model-parameter estimation

Parameter Description Value Parameter Description Value
N Total population 40,530,954 o, Infection death rate 0.03
a Birth rate 0.01318 o, Treatment death rate 0.048
B TB transmission rate 0.8 & Vaccination rate 0.9397
£ Rate of exposed individuals 0.34 Y Second-line treatment cure rate 0.51

becoming infected
T Rate of infections that 0.1 The rate of vaccination
. 0 . . 0.4
become resistant effectiveness decline
w First-line treatment rate 0.5 u Natural death rate 0.01387
y First-line treatment cure rate 0.892 [ Resistant mortality rate 0.02
) Treatment-resistant rate 0.04613 p Susceptible recovery rate 0.05

Source: East Jawa Provincial Health Office
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2.1.1 System Equilibrium Point

The tuberculosis-spread model can be represented through a system of differential equations. The
equilibrium condition when the number of subpopulations does not change is determined by setting the
right-hand side of each equation to zero. The equilibrium point is reached if the rate of change of each
compartment in the system is equal to zero (Alam et al., 2020).

Disease-Free Equilibrium Point

The disease-free condition when there is no spread of tuberculosis in the population, assuming there
are no infected individuals (E = I = T = 0). These values are substituted into equations (1) to (6) to the
disease-free equilibrium point Py = (S, Vy, Eo, Iy, To, Ry) as follows:

_ (aN(0 +p—ué) aN§ 7
P0—< CEn '0+u'0'0'0'0> (7)

Substituting each parameter value in Table 1, the disease-free system of the SVEITR model is:

Py = (37.301.726; 1.212.907; 0; 0; 0;0) (8)

Endemic Equilibrium Point

The endemic condition occurs when infection continues in the system because transmission persists,
so the disease remains endemic. The population assumes there are infected individuals (E # I # T # 0).
These values are substituted into equations (1) to (6) to obtain the endemic equilibrium point P; =
(S1,V4,E1, 1, T1, Ry) as follows:

_ N+ (w+o+p) aN§ AN(p + pu)(C — uD)(w + 01 + 1)
! Be 0+ e(Alp +w)(BD)) — pwNy 9)
AN(p +p)(C —pD)  Nw(p + pu)(C —uD) Nwy(p +p)(C —uD)
A(p + 1)(BD) — pwNy’ A(p + p)(BD) — pwNy’ A(p + n)(BD) — pwNy(p + 1)

Substituting each parameter value in Table 1, the endemic system in the SVEITR model is:

P, = (37.301.726; 1.212.907; 0; 0; 0; 0) (10)

2.1.2 Stability Analysis of Equilibrium Point

The dynamics of tuberculosis spread in the SVEITResR model are analysed by testing stability at each
equilibrium point to determine whether TB will continue to spread or can be controlled in East Java
Province.

Linearization

Linearization is the process of transforming a non-linear dynamical system into a linear differential
system around the equilibrium point (Wulandari et al., 2023). Linearization of the system into equations
(1) to (6) using the Taylor series and Jacobian matrix, as follows:
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|SVE?TR|—| (B' )eo P 0p0 —(ermo000L0
VR 55 TR N
—(s+u)y0000£—(w+01+u)00000w (11)

-(+0,+w) 00000y —(p+p)

The stability of the system can be analysed with the Jacobi matrix in equation (11), finding the
eigenvalues of the linearization in the characteristic equation of the Routh-Hurwitz criterion to determine
the stability condition.

Disease-Free Condition

The value of the disease-free equilibrium point will be substituted into the Jacobian matrix in equation
(11) to the J(P,y) matrix and eigenvalues to analyze its stability, as follows:

lJ(Po) —AL| =10
BC pI BC
~# =260 == 0p0 ~F~10000-5-0 ~G=2--0000¢ —H (12)

—100000w —A—200000y —J—A4| =10]

The matrix determinant in equation (12) produces an equation to calculate the eigenvalues of the
matrix (P,) is as follows:

M=—1 A=-]
GN + HyN — /4CNBe + G*N? — 2GH,N% + H}N?

Ay=—=F, As= o (13)
GN + H{N + /4CNBe + GN? — 2GH,N? + H?N?
As=—4; dg=-— o

The equilibrium point is to be asymptotically stable if all eigenvalues are negative (1; < 0).

A =—0.0139; A, =-0.4139; 4; =-0.9539 (14)
Ay = —0.0639; A5 = —0.9582; A= 0.0604

The eigenvalues have negative values (1, ;345 < 0) and positive values (14 < 0). Based on these
results, the disease-free equilibrium point can be categorised as unstable.

Endemic Condition

The value of the endemic equilibrium point will be substituted into the Jacobian matrix in equation
(11) to the J(P,) matrix and eigenvalues to analyze its stability, as follows:

[J(Py) —AI'l =10]
L—-260 'BDO 0 —-F AOOOOBKO G ABDOOOO H
NP N N ¢ (15)
—100000w —A—200000y —J—A4| =10]
The matrix determinant in equation (15) produces an equation to calculate the eigenvalues of the

matrix (P;) is as follows:
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A5 -1 —7.97662 —0.91322
A* | =5.57098 —4.31816 —0.01508
A3 | =7.20073 —1.68582

(16)
A% | —6.67185
A | —1.68582
A% | —0.04430
The equilibrium point is to be asymptotically stable if all eigenvalues are negative (1; < 0).
A, =—04139; 2, =-3.7219; A3 =-0.9860; A, =—0.4225 — 0.2232i (17)

As = —0.4225 + 0.2232i; Ag = —0.0180

Each value in the column shows that all are negative without any change in sign, and each eigenvalue
has a negative value (4; < 0). Based on these results, the endemic equilibrium point can be categorised as
asymptotically stable.

2.1.3 Basic Reproduction Number (R)

The basic reproduction number (R,) represents the expected number of secondary infections caused
by one infected individual in a wholly susceptible population (Resmawan & Nurwan, 2017). The value
using the Driessche and Watmough method involves analysing the disease-free equilibrium point variables
such as exposed (E), infected (/), and treated (7).

s S|1<—,11|=0
&
L[évﬁﬁozzoolooojoA[l|ooz10001]0 s
GHN HN -
()
/11'220'13=GSHL1€V

Based on the operation with eigenvectors through the calculation of the determinant of the |K — AI|
matrix, the following characteristic equation is obtained:

aN(@ +u —pd)
g (Tumnt)ee
T GHN (e +w)(w + oy + (V)

(19)

Ro

The basic reproduction number is the eigenvalue of the next-generation matrix. Substituting each
parameter, the value of R is obtained,

Ry = 1.3007 (20)

Based on the SVEITR model, the spread of tuberculosis in East Java has the potential to outbreak with
each infected individual can transmit the disease to approximately 1.3007 others.
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2.2 SVEITResR Model

The SVEITResR epidemiological model is applied to the spread of tuberculosis disease considering
multidrug resistant tuberculosis (MDR-TB) cases, vaccination BCG, and first-line treatment using anti-
tuberculosis drugs.
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Fig. 2. SVEITResR epidemic model compartment

Based on the compartment diagram in Fig. 2, the SVEITResR tuberculosis epidemic model can be
compiled into a mathematical form as follows:

ds Bl (21)
i =aN(1—-& +6V +pR (N +,u>S
%4
—— = aNé— (0 +pV (22)
dt
dE _ IS (23)
G- N (e +WE
dl
E=£E—(n+w+al+u)l 24)
dT
E=w[—(6+y+02+u)T (25)
dRes
3 - nl +yT — (Y + o3 + p)Res (26)
dR
T yT +YRes — (p + WR @7

2.2.1 System Equilibrium Point

Disease-Free Equilibrium Point

The disease-free condition when there is no spread of tuberculosis in the population assuming there
are no infected individuals (E =1 =T = Res = 0). These values are substituted into equations (21) to
(27) to the disease-free equilibrium point Py = (So, Vy, Eo, Iy, To, Resg, Ro) as follows:
https://doi.org/10.24191/mij.v6i2.6245
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Py = (aN(e TR K aNg ,0,0,0,0,0) (28)

u@+p)  6+pu

Substituting each parameter value in the Table 1, the disease-free condition system in the SVEITResR
model is:

Py = (37.301.726; 1.212.907; 0; 0; 0; 0;0) (29)

Endemic Equilibrium Point

The population assumes there are infected individuals (E # [ # T # Res # 0). These values are
substituted equations (21) to (27) the endemic equilibrium point P, = (S, V;,Ey, I, Ty, Res,, Ry) as follows:

P = NE+pu(m+w+o, +p) aNé ABN(p + )(C —uD)(m + w + 0y + 1)

! Be "0 + u’ ABe(p + pn)(BD) — Ne(mpA + ywB + Swip)’
ABN(p + w)(C — uD) BNw(p +p)(C — puD) (30)

AB(p + 1)(BD) — N(mpA + ywB + Swp)’ AB(p + p)(BD) — N(mpA + ywB + Swip)

N(Am + dw)(p + w)(C — uD) N(p + ) (C — uD)(Amp + Byw + Swyh)

AB(p + p)(BD) — N(mpA + ywB + Swp) AB(p + 1)(BD) — N(mpA + ywB + Swp) (p + p)

Substituting each parameter value in the Table 1, the endemic condition system in the SVEITResR
model is:

P; = (33.951.569; 1.212.907; 230.497; 121.715; 60.857; 27.541; 68.331) (31

2.2.2 Stability Analysis of Equilibrium Point

The dynamics of tuberculosis spread in the SVEITResR model through stability analysis at each
equilibrium point aims to tuberculosis will continue to spread or can be controlled in East Java Province.

Linearization

Linearization of the system into equations (21) to (27) using the Taylor series and Jacobian matrix, as

follows:
e Bl BS BI BS
[SVEITRes R| = |—(—+u) Bo-—o00po-(6+u)00000—0 —(e+p) —00000€
N N N N

~(r+w+o,+1)000000w —(6+y+0,+1) 0000008 (32)

-+ o,+m) 00000y Y —(p+p)

The stability of the system can be analysed with the Jacobi matrix in equation (32), finding the
eigenvalues of the linearization in the characteristic equation of the Routh-Hurwitz criterion to determine
the stability condition.

Disease-Free Condition

The value of the disease-free equilibrium point will be substituted into the Jacobian matrix in equation
(32) to the J(P,) matrix and eigenvalues to analyze its stability, as follows:

l/(Po) —All =0 (33)

https://doi.org/10.24191/mij.v6i2.6245

©Authors, 2025



89 Dian Puspita Sari et al. / Mathematical Sciences and Informatics Journal (2025) Vol. 6, No. 2

pC BC
~#=260 —=-00p0 —F—=20000000-G—-2—-00000z —H

—2000000w —A—10000008 —B—2A00000y —J
—A|=0

The matrix determinant in equation (33) produces an equation to calculate the eigenvalues of the
matrix (P,) is as follows:

M=-w 2As=-]
GN + H,N — \/4CNBe + G N2 — 2GH,N? + HZN?2

Ay = —F; e = 2N (34)
GN + HyN + J4CNBe + GZNZ — 2GH,N? + HZN?
ﬂ,3 = _A, 2.7 = — ZN
A, = —B;

The equilibrium point is to be asymptotically stable if all eigenvalues are negative (4; < 0).

A, = —0.0139; A, =—04139; A3 =-1; A, =—0.5439

As = —0.0639; A¢ = —0.0198; A, = 0.0220 35)

.....

results, the disease-free equilibrium point can be categorized as unstable.

Endemic Condition

The value of the endemic equilibrium point will be substituted into the Jacobian matrix in equation
(32) to the J(P;) matrix and eigenvalues to analyze its stability, as follows:

(P —All =0
pD pD
~#—2460 ——=-00p0 —F—20000000-6-2-00000z —H (36)
—2000000w —A—20000005 —B—200000yy —J

—Al=0

The matrix determinant in equation (36) produces an equation to calculate the eigenvalues of the
matrix (P;) is as follows:

A8 -1 —4.4727 —-0.9199 -0.003018
A5 | —3.4598 -—2.7868 —0.1462
A* | —=1.5976 —0.1371 —0.1423

(37
2| —0.6231 —0.003
A* | —0.1293
A | —0.0115
2° | —0.0369
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The equilibrium point is to be asymptotically stable if all eigenvalues are negative (4; < 0).

Ay = —0.4139; 1, =—-12998; A3 =-1.0336; A, =—0.2766 — 0.3064i (38)
As = —0.2766 + 0.3064i; As = —0.0240; A, = —0.5492

Each value in the column shows that all are negative without any change in sign, and each eigenvalue
has a negative value (1; < 0). Based on these results, the endemic equilibrium point can be categorised as
asymptotically stable.

2.2.3 Basic Reproduction Number (R,)

The value using the Driessche and Watmough method involves analysing the disease-free equilibrium
point variables such as exposed (E), infected (/), treated (7), and resistant (Res).

[K—=2AIl=0
|[S,3£ 56 000000000000O0O ]
GHN HN
—A[1000010000001001 ]|=0 (39)
She ASﬁOOO A0 00000 —20 O /1|—0
GHN = HN s Bl
&
(3 - ) DEDED = 0
&
/11,2,3 =0,4, = GHN

Based on the operation with eigenvectors through the calculation of the determinant of the |K — Al|
matrix, the following characteristic equation is obtained:

aN(@ +pu —ps)
_SBe _ ( n@+m )ﬁg
T GHN  (e+w)(m+w+ oy + )N

(40)

Ro

The basic reproduction number is the eigenvalue of the next-generation matrix. Substituting each
parameter, the value of R is obtained,

Ry = 1.0987 (41)

Based on the SVEITResR model, the spread of tuberculosis with the Multidrug Resistance Effect
(MDR-TB) in East Java has the potential to outbreak with each infected individual can transmit the disease
to approximately 1.3007 others.

2.2.4 Numerical Simulation

Fourth-order Runge-Kutta simulation in tuberculosis spread SVEITResR model involves complex
differential equations. This method provides accurate results to analyse the population (susceptible,
vaccine, exposed, infected, treated, resistant, and recovered) and predict the impact of interventions such
as treatment and vaccination. The solution of the tuberculosis spread model using the system of equations
(21) to (27) carried with the initial values of variables and parameters presented in Table 1 and the system
of equations is formulated in the Runge-Kutta scheme.

h
Sne1 =Sn + g(’ﬁs + 2Ko5 + 2kas + kys) (42)
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h
Virn =W + g(klv + 2kyy + 2ksy + kay)

h
Eny1 =En+ g(kw + 2k + 2k3g + kap)

h
vy =1 +g(k11 + 2ky; + 2k3; + kay)
h
Thy1 =T, + g(klr + 2kor + 2ksr + kyr)
h
Respyq = Res, + g(klRes + 2Kzpes + 2k3ges + k4Res)

h
Rpyi =Rp+ g(kue + 2kop + 2k3g + kag)

The coefficient value of equation (42) is obtained as follows:
kis=a(l—8&)+0V,+pR, — (Bln +1)S,
kiy =a& — (6 + Wl
kig = BlSp — (e + WE,
ki =¢E,—(m+w+o +pli, (43)
kir = wly — (6 +y + oy + )T,
Kiges = mly + 6T, — (Y + 03 + p)Res,
kig =yTy + PRes, — (p + WR,

The initial slope value k, for each variable is obtained from the equation k; is modified as follows:

-8+ 8) (1,2 31+ 3) 1)+

tay = a = 0+ ) (1 +Y)

k k k

e = B (b + 50 (0 +25) = e+ (B + )
2 2 k2

11

k
kz,=5(En+£)—(n+w+01+u)(1n+2) (44)

2
k k
kZT=w<1n+%)—(5+y+az+u)(Tn+%>

k k K
Kares =T (I" * %) +o (T" + %) —@Wt+o+w (Resn + 1;“)

k k k
=55 52) - 00 1 5)

The initial slope value k5 for each variable is obtained from the equation k, is modified as follows:

e -040 42 1+ 2) 0+ 2) 1) 55
k
k3v=af—(9+y)(vn+%)
k k k
e =810+ (5,+2) - 0 (5, +2) w
k
k31ZS(En+%)—(7T+w+01+#)(In+%>
_ ky; Kr
kzr = 1n+7 —(+y+o,+uw Tn.|.T
k k k
k3ges = ”(In + %) +4 (Tn + %) - +o3+p (Resn + 2;“)
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kZRes

k3R=y(Tn+kﬂ)+¢(Resn+ )—(p+u)(Rn+k%)

2

The initial slope value k, for each variable is obtained from the equation k5 is modified as follows:

kas =a(1 =8 + 0V, + kay) + p(Ryy + k3g) — (B(n + k3) + 1) (S + kas)
kyy = a& — (0 + WV, + ksy)
kag = By + k3;)(Sp + kas) — (e + p)(Ep + k3g)
ko =e(Ep+ksg) —(m+w+oy + 1), + ksp) (46)
kar = w(ly + k3p) = (8 +y + 05 + W)(Ty + k3r)
kages = m(ly + k) + 8(Ty + k3p) — (Y + 03 + w)(Resy, + kzpes)
kar =v(Tn + ksr) + Y(Resy + kspes) — (0 + 1) (R, + k3g)

Equation (42) is simulated with MATLAB 2023 to produce the graph as follows:

.
\‘\
NG
(a) Individuals Suscegﬂtmidble S) (b) Individuals Vaccinated (V) (q_)_lnlpdividuals Exposed (E)
(d) Individuals Infected (I) ~ (e) Individuals Treatment (T)
(f) Individuals Resistent (Res) (g) Individuals Recovered (R)

Fig. 3. Distribution Dynamics of Each Population in the SVEITResR Model

Based on Fig. 3 (a), the individuals in the susceptible sub-population (S) in the first year is 39.112.100.
This decreases over time due to natural mortality and movement of individuals to the exposed sub-
population (£) until it reaches 37.243.600 in the third year. Fig. 3 (b) an increase in the number of BCG
vaccinated individuals (V) from 523.994 to 998.400, influenced the birth rate and the effectiveness of the
vaccination program. Fig. 3 (c) and the number of exposed (£) sub-populations increased from 631.493
individuals and then decreased to 517.857 due to the transfer of individuals to the infected (/) and treated
(7) sub-populations.
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Fig. 3 (d), result in infected sub-population (/) initially amounted to 100.795 individuals decreased
due to the transfer of individuals to the resistant sub-population (Res) and treatment (7)), then increased to
251.409 individuals due to the increase in the number of exposed individuals. Fig. 3 (e), experiencing an
increase in the number of individuals in the first-line treatment (7) sub-population due to the movement of
infected individuals (/), will stabilize significantly after treatment (7) is completed and move to the
recovered (R) sub-population. Optimal treatment duration helps reduce drug resistance. In Fig. 3 (f), the
number of individuals in the resistant (Res) sub-population increased significantly from 2.112 in the first
year to 7.516 in the third year. This increase was due to treatment failure in some individuals who then
switched to the resistant (Res) sub-population and received second-line treatment to recover or moved to
the recovered (R) sub-population. The rate of increase is influenced by factors such as non-adherence to
treatment or bacterial mutations that increase resistance.

In Fig. 3 (g), the number of individuals in the recovered (R) sub-population increased from 63.080 in
year one to 264.871 in year three. This indicates successful treatment of individuals from the treatment (7)
and resistant (Res) sub-populations, reflecting adherence to therapy, drug effectiveness, and disease control
programs. Individuals recovered (R) remain at risk of re-exposure and enter the susceptible (S) sub-
population due to loss of immunity.

3. RESULT AND DISCUSSION

Based on the SVEITResR model, the rate of individuals first-line treatment with rifampicin and isoniazid
is denoted as w. The results that a treatment for 2 months with a parameter value of w = 0.167, resulted in
a basic reproduction number (R,) of 2.2756. If a 6-month treatment procedure with a parameter value of w
= 0.5 reduced the basic reproductive rate (R;) to 1.0987. Treatment duration can reduce the basic
reproduction number (R,), prevent resistance and control the spread of the disease. The duration of first-
line treatment and adherence to that duration is very important to prevent the occurrence of resistance in
the spread of tuberculosis in the East Java region.

The SVEITResR model has a lower basic reproduction number (R) than the SVEITR model, despite
including a resistant population. Second-line treatment is effective in reducing transmission from resistant
individuals and vaccination prevents infection, reducing the number of individuals who become resistant.
With intensive treatment and appropriate medical interventions, the proportion of resistant individuals can
be reduced, and the R, value remains low even when resistance is considered. The importance of effective
medical intervention to control the tuberculosis outbreak.

The basic reproduction number (R,) SVEITResR model of 1.0987 indicates that tuberculosis will still
spread in East Java, Indonesia. In comparison, research by Ronoh et al., (2016) with case studies in Africa
and South Asia, the SVEIResR model a basic reproduction number (R;) of 10.4348 due to ineffective
treatment drug resistance (MDR-TB) extends the infection period and increases the transmission rate (B) if
the model assumes contacts of 5-10 people/day (high B), then the value of R, can increase.

Research by Ochieng, (2024) with case studies in Kenya, the SVEITRS model produced a
reproduction number (R;) of 1.005341. TB can still spread at a low rate, estimating the time to double
cases to 5-10 years. The SIR model in Kazakhstan research by Kalizhanova et al., (2024) R, value 0f 0.2960
indicates the epidemic is a phase of decreasing susceptible population and recovered over time. The success
of Kazakhstan's health programs rapid diagnosis, vaccination, and treatment of MDR-TB with a success
rate of 82.5% contributed to reducing the spread of the disease and increasing the number of cured patients.

The SVEIR-I model in China research by Liu et al., (2023) R, value of 1.8605 indicates the disease
has the potential to become endemic if no increase in vaccination or treatment. The model is a nonlinear
incidence rate (the transmission rate is not constant) and depends on the number of infected and susceptible
individuals. Complex interactions between susceptible and infected populations increase the likelihood of
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transmission, especially in densely populated areas. Research by Tamhaji & Hamdan, (2023) with case
studies in Malaysia, the BSEIR model produced a reproduction number (R,) of 1.955. The addition of the
immigration parameter in the model suggests that the arrival of new individuals from areas with high TB
prevalence increases the number of susceptible and infected individuals in Malaysia.

4. CONCLUSION

4.1 Concluding Remarks

The stability analysis of the SVEITR model system the existence of two equilibrium points, the
disease-free equilibrium point with P, = (37.301.726;1.212.907; 0; 0; 0; 0; 0) is not stable, and the
endemic equilibrium point P; = (28.678.522; 1.212.907; 956.482; 597.944; 313.430;103.050)
asymptotically stable with the value of the basic reproduction number (R, = 1.3007). It can be concluded
that the spread of tuberculosis in East Java has the potential to outbreak with each infected individual can
transmit the disease by 1.3007 to other individuals.

The stability analysis of the SVEITResR model system the existence of two equilibrium points, the
disease-free equilibrium point with P, = (37.301.726; 1.212.907; 0; 0; 0; 0; 0) is not stable, and the
endemic equilibrium point with P; = (33.951.569; 1.212.907; 230.497; 121.715; 60.857; 27.541;
68.331) is asymptotically stable with the value of the basic reproduction number (R, = 1.0987). It can be
concluded that the spread of tuberculosis disease with Multidrug Resistance Effect (MDR-TB) in East Java
has the potential to outbreak with each infected individual can transmit the disease by 1.0987 to other
individuals.

Simulation results using 4th-order Runge-Kutta show the number of individuals exposed (F) to
tuberculosis will decrease significantly after 2024, while the number of infected (/) individuals is projected
to continue increasing until 2025 before reaching a steady state the next year. The effectiveness of
vaccination as well as first- and second-line treatment an important role in reducing the number of exposed
and infected individuals and significantly increasing the number of recovered (R) individuals.

The tuberculosis (TB) situation in Indonesia contributes to the spread of the epidemic, and it is
important to ensure that the value of the basic reproduction number (R, < 1) to stop the spread of the
disease. Numerical and sensitivity analysis of the R, parameter way to reduce the number of infected
individuals is to increase the transmission rate () and recovery rate (y). A comparison between models
with and without resistance shows that TB infection with resistance decreases due to second-line treatment.
Control strategies such as increased vaccination, early diagnosis, and effective treatment are critical to
controlling or eliminating the disease from the population, as TB is still a health problem that has not been
fully eradicated in Indonesia.

4.2 Suggestion

After analysing the mathematical model of tuberculosis disease spread, the author proposes several
development suggestions for further research, such as adding new parameters and populations, such as
HIV-TBC and advanced resistance such as extensively drug-resistant tuberculosis (XDR-TB) that requires
third-line treatment. SVEITResR model can be developed by adding optimal control with the use of
antibiotic parameters in accelerating the healing of infected individuals and shortening the spread of
tuberculosis disease. Methods that can be applied include the Minimum Pontryagin Principle (MPP) or
Linear Quadratic Regulator (LQR).
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