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 Tuberculosis (TB) is an infectious disease caused by Mycobacterium 
tuberculosis, which affects the lungs and other organs.  In East Java, 
there were 87,048 TB cases, and only 53% of regions achieved the 90% 
treatment success target. A major challenge in TB control is drug 
resistance, including Multidrug-Resistant Tuberculosis (MDR-TB). 
Prevention is implemented through BCG vaccination, while treatment is 
administered using anti-tuberculosis drugs. This research models the 
spread of tuberculosis in East Java using two models, SVEITR (without 
resistance) and SVEITResR (with resistance), to analyse the pattern of 
disease spread based on data obtained from the East Java Provincial 
Health Office. The basic reproductive number (𝑅₀) is calculated using 
the next-generation method, and stability analysis is conducted at the 
Disease-Free Equilibrium (DFE) and Endemic Equilibrium (EE) to test 
the asymptotic stability of disease transmission The analysis of the 
SVEITResR mathematical model (𝑅0= 1.0987) shows it has a lower 
basic reproduction number than the SVEITR model (𝑅0= 1.3007.). Both 
models indicate that the spread of tuberculosis in the East Java region 
has the potential to cause an outbreak. Numerical simulations using the 
fourth-order Runge-Kutta method project a significant decrease in the 
number of exposed individuals after 2024, while the number of infected 
individuals is expected to increase until 2025 before reaching a stable 
condition thereafter. Vaccination and first and second-line treatment 
effectively reduce exposure to infection and increase cure rates over 
time. 
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1. INTRODUCTION 

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which infects the 

respiratory tract and spreads through airborne droplets when a person coughs, sneezes or talks. It usually 

begins with the lungs and can extend to the brain, skin, bones, and lymph nodes. If left untreated, TB 
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weakens the immune system and may be fatal, making it a serious health problem with far-reaching impacts 

(Rahmawati et al., 2024).  

In 2023, Indonesia recorded the second-highest number of tuberculosis (TB) cases in the world after 

India (1,060,000 cases and 134,000 deaths, about 10% of global cases) (World Health Organization, 2023). 

One region in Indonesia that has drawn particular attention is the East Java Province, which recorded 87,048 

cases up from 78,799 cases in 2022, with a low treatment success rate of 53% of districts not reaching the 

90% treatment success target. Surabaya, Sidoarjo, and Jember are the areas with the highest cases, 

dominated by men (56%) compared to women (44%), largely due to risk factors such as smoking and 

alcohol use (Dinkes Jatim, 2023). 

TB treatment success rates are assessed based on the percentage of patients who recover and complete 

treatment. In 2023, the TB treatment success rate in Indonesia was recorded at 86.5%, below the 90% target 

of the Ministry of Health. Complicated the resistance of Mycobacterium tuberculosis bacteria to anti-

tuberculosis drugs such as isoniazid and rifampicin caused irregular treatment, bacterial mutations, and 

patient immunity (Kemenkes RI, 2023). This resistance will hamper treatment in cases of MDR-TB and 

XDR-TB, which require more complex treatment with a higher risk of failure. Controlling TB, including 

MDR-TB, requires a comprehensive approach such as administering the BCG vaccine to infants 

(Vyawahare et al., 2023). The spread of TB and the impact of MDR-TB in a population will be modelled 

as an epidemiological mathematical model. This model simulates the spread of disease by considering 

factors such as transmission rate, treatment effectiveness, vaccination, and drug resistance. 

Classical epidemiological models SIR (Susceptible, Infected, Recovered) will analyse the dynamics 

of the spread of TB disease by assuming that individuals infected with TB can recover directly (Ergen et 

al., 2015). The SITR (Susceptible, Infected, Treatment, Recovered) model adds a treatment factor with the 

assumption that infected individuals will receive treatment before recovering (Side et al., 2016). The SVEIL 

(Susceptible, Vaccinated, Exposed, Infected, Latent) model adds the BCG vaccination factor for newborns 

by demonstrating the effectiveness of vaccination and treatment in TB control (Mengistu & Witbooi, 2019). 

The SEIResR (Susceptible, Exposed, Infected, Resistant, Recovered) model to analyse TB transmission 

including MDR-TB cases due to incomplete treatment resulting in disease outbreaks and an increase in new 

cases, hence the need for better control strategies (Ronoh et al., 2016). 

This research aims to develop the previous epidemiological model of tuberculosis disease into the 

SVEITResR (Susceptible, Vaccination, Exposed, Infected, Treatment, Resistant, Recovered) model. This 

model adds the BCG vaccination component from the SVEIL model (Mengistu & Witbooi, 2019), the first-

line OAT treatment aspect (isoniazid and rifampicin) from the SITR model (Side et al., 2016), and the 

concept of MDR-TB and the effectiveness of second-line OAT (fluoroquinolones and aminoglycosides) 

from the SEIResR model (Ronoh et al., 2016). This development aims to analyse the dynamics of TB 

spread, including MDR-TB cases, considering the effects of vaccination and various treatment strategies. 

2. MATHEMATICAL MODEL OF EPIDEMIOLOGY   

The epidemiological model analyses the spread of infectious diseases by dividing the population into 

several sub-populations. The movement of populations depends on disease characteristics (Yong, 2020). 

The SVEITR and SVEITResR epidemiological models are used to analyse tuberculosis spread under two 

scenarios: with and without drug resistance. This research incorporates the effects of vaccination and 

different treatments in controlling the spread of tuberculosis.  

2.1 SVEITR Model 

The SVEITR model for modelling TB spread in East Java considers the effectiveness of BCG 

vaccination in infants as an early preventive measure and first-line treatment using anti-tuberculosis drugs. 
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Fig. 1. SVEITR epidemic-model compartment 

 

Based on the compartment diagram in Fig. 1, the SVEITR tuberculosis epidemic model is expressed 

mathematically as follows: 

 

 𝑑𝑆

𝑑𝑡
= 𝛼𝑁(1 − 𝜉) + 𝜃𝑉 + 𝜌𝑅 − (

𝛽𝐼

𝑁
+ 𝜇) 𝑆 (1) 

 

 𝑑𝑉

𝑑𝑡
= 𝛼𝑁𝜉 − (𝜃 + 𝜇)𝑉 (2) 

 

 𝑑𝐸

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− (𝜀 + 𝜇)𝐸 (3) 

 

 𝑑𝐼

𝑑𝑡
= 𝜀𝐸 − (𝜔 + 𝜎1 + 𝜇)𝐼  (4) 

 

 𝑑𝑇

𝑑𝑡
= 𝜔𝐼 − (𝛾 + 𝜎2 + 𝜇)𝑇 (5) 

 

 𝑑𝑅

𝑑𝑡
= 𝛾𝑇 − (𝜌 + 𝜇)𝑅  (6) 

 

Research data and parameter values were obtained from the East Java Provincial Health Office, 

including the number of individuals with various TB infection statuses as mortality data, total population 

deaths, and deaths due to TB in various sub-populations. The parameters of the mathematical model are 

described in Table 1. 

 
Table 1. Model-parameter estimation  

 

Parameter Description Value Parameter Description Value 

N Total population 40,530,954 𝜎1 Infection death rate 0.03 

𝛼 Birth rate 0.01318 𝜎2 Treatment death rate 0.048 

𝛽 TB transmission rate 0.8 𝜉 Vaccination rate 0.9397 

𝜀 Rate of exposed individuals 
becoming infected 

0.34 𝜓 Second-line treatment cure rate 0.51 

𝜋  Rate of infections that 

become resistant 

0.1 
𝜃 

The rate of vaccination 

effectiveness decline 
0.4 

𝜔  First-line treatment rate 0.5 𝜇 Natural death rate 0.01387 

𝛾  First-line treatment cure rate 0.892 𝜎3 Resistant mortality rate 0.02 

𝛿 Treatment-resistant rate 0.04613 𝜌 Susceptible recovery rate 0.05 

Source: East Jawa Provincial Health Office 
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2.1.1 System Equilibrium Point 

The tuberculosis-spread model can be represented through a system of differential equations. The 
equilibrium condition when the number of subpopulations does not change is determined by setting the 
right-hand side of each equation to zero. The equilibrium point is reached if the rate of change of each 
compartment in the system is equal to zero (Alam et al., 2020). 

Disease-Free Equilibrium Point  

The disease-free condition when there is no spread of tuberculosis in the population, assuming there 
are no infected individuals (𝐸 = 𝐼 = 𝑇 =  0). These values are substituted into equations (1) to (6) to the 
disease-free equilibrium point 𝛲0 =  (𝑆0, 𝑉0 , 𝐸0, 𝐼0, 𝑇0, 𝑅0) as follows: 
 

 
𝛲0 = (

𝛼𝑁(𝜃 + 𝜇 − 𝜇𝜉)

𝜇(𝜃 + 𝜇)
,

𝛼𝑁𝜉

𝜃 + 𝜇
, 0,0,0,0) (7) 

 

Substituting each parameter value in Table 1, the disease-free system of the SVEITR model is: 

 

 𝛲0 = (37.301.726;  1.212.907;  0;  0;  0; 0) (8) 

Endemic Equilibrium Point  

The endemic condition occurs when infection continues in the system because transmission persists, 
so the disease remains endemic. The population assumes there are infected individuals (𝐸 ≠ 𝐼 ≠ 𝑇 ≠ 0). 
These values are substituted into equations (1) to (6) to obtain the endemic equilibrium point 𝛲1 =
 (𝑆1, 𝑉1 , 𝐸1, 𝐼1, 𝑇1, 𝑅1) as follows: 

 

 
𝑃1 =

𝑁(𝜀 + 𝜇)(𝜔 + 𝜎1 + 𝜇)

𝛽𝜀
,

𝛼𝑁𝜉

𝜃 + 𝜇
,
𝐴𝑁(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)(𝜔 + 𝜎1 + 𝜇)

𝜀(𝐴(𝜌 + 𝜇)(𝛽𝐷)) − 𝜌𝜔𝑁𝛾
, 

𝐴𝑁(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)

𝐴(𝜌 + 𝜇)(𝛽𝐷) − 𝜌𝜔𝑁𝛾
,

𝑁𝜔(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)

𝐴(𝜌 + 𝜇)(𝛽𝐷) − 𝜌𝜔𝑁𝛾
,

𝑁𝜔𝛾(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)

𝐴(𝜌 + 𝜇)(𝛽𝐷) − 𝜌𝜔𝑁𝛾(𝜌 + 𝜇)
 

(9) 

 

Substituting each parameter value in Table 1, the endemic system in the SVEITR model is: 

 

 𝛲1 = (37.301.726;  1.212.907;  0;  0;  0;  0)  (10) 

 

2.1.2 Stability Analysis of Equilibrium Point 

The dynamics of tuberculosis spread in the SVEITResR model are analysed by testing stability at each 
equilibrium point to determine whether TB will continue to spread or can be controlled in East Java 
Province. 

Linearization 

Linearization is the process of transforming a non-linear dynamical system into a linear differential 
system around the equilibrium point (Wulandari et al., 2023). Linearization of the system into equations 
(1) to (6) using the Taylor series and Jacobian matrix, as follows: 
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 |𝑆̇ 𝑉̇ 𝐸̇ 𝐼̇ 𝑇̇ 𝑅̇ | = |− (
𝛽𝐼

𝑁
+ 𝜇)  𝜃 0 −

𝛽𝑆

𝑁
 0 𝜌 0 − (𝜃 + 𝜇) 0 0 0 0 

𝛽𝐼

𝑁
 0 

− (𝜀 + 𝜇) 
𝛽𝑆

𝑁
 0 0 0 0 𝜀 − (𝜔 + 𝜎1 + 𝜇) 0 0 0 0 0 𝜔 

− (𝛾 + 𝜎2 + 𝜇) 0 0 0 0 0 𝛾 − (𝜌 + 𝜇) | 

  

(11) 

The stability of the system can be analysed with the Jacobi matrix in equation (11), finding the 

eigenvalues of the linearization in the characteristic equation of the Routh-Hurwitz criterion to determine 

the stability condition. 

Disease-Free Condition 

The value of the disease-free equilibrium point will be substituted into the Jacobian matrix in equation 
(11) to the 𝐽(𝛲0) matrix and eigenvalues to analyze its stability, as follows: 
 

 |𝐽(𝛲0) − 𝜆𝐼 | = |0 | 

|−𝜇 − 𝜆 𝜃 0 −
𝛽𝐶

𝑁
 0 𝜌 0 − 𝐹 − 𝜆 0 0 0 0 

𝛽𝐼

𝑁
 0 − 𝐺 − 𝜆 

𝛽𝐶

𝑁
 0 0 0 0 𝜀 − 𝐻

− 𝜆 0 0 0 0 0 𝜔 − 𝐴 − 𝜆 0 0 0 0 0 𝛾 − 𝐽 − 𝜆 |  = |0 | 

(12) 

 

The matrix determinant in equation (12) produces an equation to calculate the eigenvalues of the 

matrix (𝛲0) is as follows:  

 

 𝜆1 = −𝜇;      𝜆4 = −𝐽 

𝜆2 = −𝐹;      𝜆5 = −
𝐺𝑁 + 𝐻1𝑁 − √4𝐶𝑁𝛽𝜀 + 𝐺2𝑁2 − 2𝐺𝐻1𝑁2 + 𝐻1

2𝑁2

2𝑁
 

𝜆3 = −𝐴;      𝜆6 = −
𝐺𝑁 + 𝐻1𝑁 + √4𝐶𝑁𝛽𝜀 + 𝐺2𝑁2 − 2𝐺𝐻1𝑁2 + 𝐻1

2𝑁2

2𝑁
 

(13) 

 

The equilibrium point is to be asymptotically stable if all eigenvalues are negative (𝜆𝑖 < 0). 

 

 𝜆1 = −0.0139;    𝜆2 = −0.4139;    𝜆3 = −0.9539 
𝜆4 = −0.0639;     𝜆5 = −0.9582;    𝜆6 =  0.0604 

(14) 

 
The eigenvalues have negative values (𝜆1,2,3,4,5 < 0) and positive values (𝜆6 < 0). Based on these 

results, the disease-free equilibrium point can be categorised as unstable. 

Endemic Condition 

The value of the endemic equilibrium point will be substituted into the Jacobian matrix in equation 
(11) to the 𝐽(𝛲1) matrix and eigenvalues to analyze its stability, as follows:     
 

 |𝐽(𝛲1) − 𝜆𝐼 | = |0 | 

|−𝐿 − 𝜆 𝜃 0 −
𝛽𝐷

𝑁
 0 𝜌 0 − 𝐹 − 𝜆 0 0 0 0 

𝛽𝐾

𝑁
 0 − 𝐺 − 𝜆 

𝛽𝐷

𝑁
 0 0 0 0 𝜀 − 𝐻

− 𝜆 0 0 0 0 0 𝜔 − 𝐴 − 𝜆 0 0 0 0 0 𝛾 − 𝐽 − 𝜆 |  = |0 | 

(15) 

      

The matrix determinant in equation (15) produces an equation to calculate the eigenvalues of the 

matrix (𝛲1) is as follows:  
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 𝜆5 −1 −7.97662 −0.91322 

𝜆4 −5.57098 −4.31816 −0.01508 

𝜆3 −7.20073 −1.68582  

𝜆2 −6.67185   

𝜆 −1.68582   

𝜆0 −0.04430   
 

(16) 

 

The equilibrium point is to be asymptotically stable if all eigenvalues are negative (𝜆𝑖 < 0). 

 

 𝜆1 = −0.4139;    𝜆2 = −3.7219;    𝜆3 = −0.9860;    𝜆4 = −0.4225 −  0.2232𝑖 
𝜆5 = −0.4225 +  0.2232𝑖;     𝜆6 =  −0.0180 

(17) 

 

Each value in the column shows that all are negative without any change in sign, and each eigenvalue 

has a negative value (𝜆𝑖 < 0). Based on these results, the endemic equilibrium point can be categorised as 

asymptotically stable. 

2.1.3 Basic Reproduction Number (𝑹𝟎) 

The basic reproduction number (𝑅0) represents the expected number of secondary infections caused 
by one infected individual in a wholly susceptible population (Resmawan & Nurwan, 2017). The value 
using the Driessche and Watmough method involves analysing the disease-free equilibrium point variables 
such as exposed (E), infected (I), and treated (T). 
 

 |𝐾 − 𝜆𝐼| = 0 

                                           |[
𝑆𝛽𝜀

𝐺𝐻𝑁
 

𝑆𝛽

𝐻𝑁
 0 0 0 0 0 0 0 ] − 𝜆[1 0 0 0 1 0 0 0 1 ]| = 0 

          |
𝑆𝛽𝜀

𝐺𝐻𝑁
− 𝜆 

𝑆𝛽

𝐻𝑁
 0 0 − 𝜆 0 0 0 − 𝜆 | = 0 

                                                                            (
𝑆𝛽𝜀

𝐺𝐻𝑁
− 𝜆) (−𝜆)(−𝜆) = 0 

𝜆1,2 = 0 , 𝜆3 =
𝑆𝛽𝜀

𝐺𝐻𝑁
 

 

(18) 

 

 

 

Based on the operation with eigenvectors through the calculation of the determinant of the |𝐾 − 𝜆𝐼| 
matrix, the following characteristic equation is obtained: 
 

 

𝑅0 =
𝑆𝛽𝜀

𝐺𝐻𝑁
=

(
𝛼𝑁(𝜃 + 𝜇 − 𝜇𝜉)

𝜇(𝜃 + 𝜇)
) 𝛽𝜀

(𝜀 + 𝜇)(𝜔 + 𝜎1 + 𝜇)(𝑁)
 

(19) 

 

The basic reproduction number is the eigenvalue of the next-generation matrix. Substituting each 

parameter, the value of 𝑅0 is obtained, 

 

 𝑅0 = 1.3007 (20) 
 

Based on the SVEITR model, the spread of tuberculosis in East Java has the potential to outbreak with 

each infected individual can transmit the disease to approximately 1.3007 others. 
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2.2 SVEITResR Model 

The SVEITResR epidemiological model is applied to the spread of tuberculosis disease considering 

multidrug resistant tuberculosis (MDR-TB) cases, vaccination BCG, and first-line treatment using anti-

tuberculosis drugs. 

 
Fig. 2. SVEITResR epidemic model compartment 

 

Based on the compartment diagram in Fig. 2, the SVEITResR tuberculosis epidemic model can be 

compiled into a mathematical form as follows: 

 

 

 𝑑𝑆

𝑑𝑡
= 𝛼𝑁(1 − 𝜉) + 𝜃𝑉 + 𝜌𝑅 − (

𝛽𝐼

𝑁
+ 𝜇) 𝑆 (21) 

 

 𝑑𝑉

𝑑𝑡
= 𝛼𝑁𝜉 − (𝜃 + 𝜇)𝑉 (22) 

 

 𝑑𝐸

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− (𝜀 + 𝜇)𝐸 (23) 

 

 𝑑𝐼

𝑑𝑡
= 𝜀𝐸 − (𝜋 + 𝜔 + 𝜎1 + 𝜇)𝐼  (24) 

 

 𝑑𝑇

𝑑𝑡
= 𝜔𝐼 − (𝛿 + 𝛾 + 𝜎2 + 𝜇)𝑇 (25) 

 

 𝑑𝑅𝑒𝑠

𝑑𝑡
= 𝜋𝐼 + 𝛾𝑇 − (𝜓 +  𝜎3 + 𝜇)𝑅𝑒𝑠 (26) 

 

 𝑑𝑅

𝑑𝑡
= 𝛾𝑇 + 𝜓𝑅𝑒𝑠 − (𝜌 + 𝜇)𝑅  (27) 

 

2.2.1 System Equilibrium Point 

Disease-Free Equilibrium Point  

The disease-free condition when there is no spread of tuberculosis in the population assuming there 
are no infected individuals (𝐸 = 𝐼 = 𝑇 = 𝑅𝑒𝑠 =  0). These values are substituted into equations (21) to 
(27) to the disease-free equilibrium point 𝛲0 =  (𝑆0, 𝑉0 , 𝐸0, 𝐼0, 𝑇0, 𝑅𝑒𝑠0 , 𝑅0) as follows: 
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𝛲0 = (

𝛼𝑁(𝜃 + 𝜇 − 𝜇𝜉)

𝜇(𝜃 + 𝜇)
,

𝛼𝑁𝜉

𝜃 + 𝜇
, 0,0,0,0,0) (28) 

 
Substituting each parameter value in the Table 1, the disease-free condition system in the SVEITResR 

model is: 

 

 𝛲0 = (37.301.726;  1.212.907;  0;  0;  0;  0; 0) (29) 

Endemic Equilibrium Point  

The population assumes there are infected individuals (𝐸 ≠ 𝐼 ≠ 𝑇 ≠ 𝑅𝑒𝑠 ≠ 0). These values are 
substituted equations (21) to (27) the endemic equilibrium point 𝛲1 =  (𝑆1, 𝑉1 , 𝐸1, 𝐼1, 𝑇1, 𝑅𝑒𝑠1 , 𝑅1) as follows: 
 

 
𝛲1 =

𝑁(𝜀 + 𝜇)(𝜋 + 𝜔 + 𝜎1 + 𝜇)

𝛽𝜀
,

𝛼𝑁𝜉

𝜃 + 𝜇
,

𝐴𝐵𝑁(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)(𝜋 + 𝜔 + 𝜎1 + 𝜇)

𝐴𝐵𝜀(𝜌 + 𝜇)(𝛽𝐷) − 𝑁𝜀(𝜋𝜓𝐴 + 𝛾𝜔𝐵 + 𝛿𝜔𝜓)
, 

 
𝐴𝐵𝑁(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)

𝐴𝐵(𝜌 + 𝜇)(𝛽𝐷) − 𝑁(𝜋𝜓𝐴 + 𝛾𝜔𝐵 + 𝛿𝜔𝜓)
,

𝐵𝑁𝜔(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)

𝐴𝐵(𝜌 + 𝜇)(𝛽𝐷) − 𝑁(𝜋𝜓𝐴 + 𝛾𝜔𝐵 + 𝛿𝜔𝜓)
  

𝑁(𝐴𝜋 + 𝛿𝜔)(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)

𝐴𝐵(𝜌 + 𝜇)(𝛽𝐷) − 𝑁(𝜋𝜓𝐴 + 𝛾𝜔𝐵 + 𝛿𝜔𝜓)
,

𝑁(𝜌 + 𝜇)(𝐶 − 𝜇𝐷)(𝐴𝜋𝜓 + 𝐵𝛾𝜔 + 𝛿𝜔𝜓)

𝐴𝐵(𝜌 + 𝜇)(𝛽𝐷) − 𝑁(𝜋𝜓𝐴 + 𝛾𝜔𝐵 + 𝛿𝜔𝜓)(𝜌 + 𝜇)
 

(30) 

 

Substituting each parameter value in the Table 1, the endemic condition system in the SVEITResR 

model is: 

 

 𝛲1 = (33.951.569;  1.212.907;  230.497;  121.715;  60.857;  27.541;  68.331) (31) 

2.2.2 Stability Analysis of Equilibrium Point 

The dynamics of tuberculosis spread in the SVEITResR model through stability analysis at each 
equilibrium point aims to tuberculosis will continue to spread or can be controlled in East Java Province. 

Linearization 

Linearization of the system into equations (21) to (27) using the Taylor series and Jacobian matrix, as 
follows: 

 |𝑆̇ 𝑉̇ 𝐸̇ 𝐼 ̇𝑇̇ 𝑅𝑒𝑠̇  𝑅̇ | = |− (
𝛽𝐼

𝑁
+ 𝜇)  𝜃 0 −

𝛽𝑆

𝑁
 0 0 𝜌 0 − (𝜃 + 𝜇) 0 0 0 0 0 

𝛽𝐼

𝑁
 0 − (𝜀 + 𝜇) 

𝛽𝑆

𝑁
 0 0 0 0 0 𝜀 

− (𝜋 + 𝜔 + 𝜎1 + 𝜇) 0 0 0 0 0 0 𝜔 − (𝛿 + 𝛾 + 𝜎2 + 𝜇) 0 0 0 0 0 0 𝛿 

− (𝜓 +  𝜎3 + 𝜇) 0 0 0 0 0 𝛾 𝜓 − (𝜌 + 𝜇) | 

(32) 

 

The stability of the system can be analysed with the Jacobi matrix in equation (32), finding the 

eigenvalues of the linearization in the characteristic equation of the Routh-Hurwitz criterion to determine 

the stability condition. 

Disease-Free Condition 

The value of the disease-free equilibrium point will be substituted into the Jacobian matrix in equation 
(32) to the 𝐽(𝛲0) matrix and eigenvalues to analyze its stability, as follows: 
                    

 |𝐽(𝛲0) − 𝜆𝐼| = 0      

 
(33) 
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|−𝜇 − 𝜆 𝜃 0 −
𝛽𝐶

𝑁
 0 0 𝜌 0 − 𝐹 − 𝜆 0 0 0 0 0 0 0 − 𝐺 − 𝜆 

𝛽𝐶

𝑁
 0 0 0 0 0 𝜀 − 𝐻

− 𝜆 0 0 0 0 0 0 𝜔 − 𝐴 − 𝜆 0 0 0 0 0 0 𝛿 − 𝐵 − 𝜆 0 0 0 0 0 𝛾 𝜓 − 𝐽

− 𝜆 | = 0 

 

The matrix determinant in equation (33) produces an equation to calculate the eigenvalues of the 

matrix (𝛲0) is as follows:  

 

 
 

𝜆1 = −𝜇;      𝜆5 = −𝐽 

𝜆2 = −𝐹;      𝜆6 = −
𝐺𝑁 + 𝐻2𝑁 − √4𝐶𝑁𝛽𝜀 + 𝐺2𝑁2 − 2𝐺𝐻2𝑁2 + 𝐻2

2𝑁2

2𝑁
 

𝜆3 = −𝐴;      𝜆7 = −
𝐺𝑁 + 𝐻2𝑁 + √4𝐶𝑁𝛽𝜀 + 𝐺2𝑁2 − 2𝐺𝐻2𝑁2 + 𝐻2

2𝑁2

2𝑁
 

𝜆4 = −𝐵; 

(34) 

 
 

The equilibrium point is to be asymptotically stable if all eigenvalues are negative (𝜆𝑖 < 0). 

 

 𝜆1 = −0.0139;    𝜆2 = −0.4139;    𝜆3 = −1;    𝜆4 = −0.5439 
𝜆5 = −0.0639;    𝜆6 =  −0.0198;    𝜆7 =  0.0220 

(35) 

 
 

The eigenvalues have negative values (𝜆1,2,3,4,5,6 < 0) and positive values (𝜆7 < 0). Based on these 

results, the disease-free equilibrium point can be categorized as unstable. 

Endemic Condition 

The value of the endemic equilibrium point will be substituted into the Jacobian matrix in equation 
(32) to the 𝐽(𝛲1) matrix and eigenvalues to analyze its stability, as follows:   

 

 |𝐽(𝛲1) − 𝜆𝐼| = 0      

 

|−𝜇 − 𝜆 𝜃 0 −
𝛽𝐷

𝑁
 0 0 𝜌 0 − 𝐹 − 𝜆 0 0 0 0 0 0 0 − 𝐺 − 𝜆 

𝛽𝐷

𝑁
 0 0 0 0 0 𝜀 − 𝐻

− 𝜆 0 0 0 0 0 0 𝜔 − 𝐴 − 𝜆 0 0 0 0 0 0 𝛿 − 𝐵 − 𝜆 0 0 0 0 0 𝛾 𝜓 − 𝐽

− 𝜆 | = 0 

(36) 

                   

The matrix determinant in equation (36) produces an equation to calculate the eigenvalues of the 

matrix (𝛲1) is as follows:  

 

  

𝜆6 −1 −4.4727 −0.9199 −0.003018 

𝜆5 −3.4598 −2.7868 −0.1462  

𝜆4 −1.5976 −0.1371 −0.1423  

𝜆3 −0.6231 − 0.003   

𝜆2 −0.1293    

𝜆 −0.0115    

𝜆0 −0.0369    
 

(37) 
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The equilibrium point is to be asymptotically stable if all eigenvalues are negative (𝜆𝑖 < 0). 

 

 𝜆1 = −0.4139;    𝜆2 = −1.2998;    𝜆3 = −1.0336;    𝜆4 = −0.2766 −  0.3064𝑖 
𝜆5 = −0.2766 +  0.3064𝑖;    𝜆6 =  −0.0240;    𝜆7 =  −0.5492 

(38) 

 

Each value in the column shows that all are negative without any change in sign, and each eigenvalue 

has a negative value (𝜆𝑖 < 0). Based on these results, the endemic equilibrium point can be categorised as 

asymptotically stable. 

2.2.3 Basic Reproduction Number (𝑹𝟎) 

The value using the Driessche and Watmough method involves analysing the disease-free equilibrium 
point variables such as exposed (E), infected (I), treated (T), and resistant (Res). 

 

 |𝐾 − 𝜆𝐼| = 0 

                                           |[
𝑆𝛽𝜀

𝐺𝐻𝑁
 

𝑆𝛽

𝐻𝑁
 0 0  0 0 0 0  0 0  0 0  0 0  0 0   ]

− 𝜆[1 0 0 0  0 1 0 0  0 0  0 0  1 0  0 1   ]| = 0 

 |
𝑆𝛽𝜀

𝐺𝐻𝑁
− 𝜆 

𝑆𝛽

𝐻𝑁
 0   0  0 − 𝜆 0   0  0 0  0 0  − 𝜆 0     0 − 𝜆   | = 0 

                                                                    (
𝑆𝛽𝜀

𝐺𝐻𝑁
− 𝜆) (−𝜆)(−𝜆)(−𝜆) = 0 

𝜆1,2,3 = 0 , 𝜆4 =
𝑆𝛽𝜀

𝐺𝐻𝑁
 

 

(39) 

 

 

   

Based on the operation with eigenvectors through the calculation of the determinant of the |𝐾 − 𝜆𝐼| 
matrix, the following characteristic equation is obtained: 

 

 

𝑅0 =
𝑆𝛽𝜀

𝐺𝐻𝑁
=

(
𝛼𝑁(𝜃 + 𝜇 − 𝜇𝜉)

𝜇(𝜃 + 𝜇)
) 𝛽𝜀

(𝜀 + 𝜇)(𝜋 + 𝜔 + 𝜎1 + 𝜇)(𝑁)
 

(40) 

 

The basic reproduction number is the eigenvalue of the next-generation matrix. Substituting each 

parameter, the value of 𝑅0 is obtained, 

 

 𝑅0 = 1.0987 (41) 

 

Based on the SVEITResR model, the spread of tuberculosis with the Multidrug Resistance Effect 

(MDR-TB) in East Java has the potential to outbreak with each infected individual can transmit the disease 

to approximately 1.3007 others. 

2.2.4 Numerical Simulation 

Fourth-order Runge-Kutta simulation in tuberculosis spread SVEITResR model involves complex 
differential equations. This method provides accurate results to analyse the population (susceptible, 
vaccine, exposed, infected, treated, resistant, and recovered) and predict the impact of interventions such 
as treatment and vaccination. The solution of the tuberculosis spread model using the system of equations 
(21) to (27) carried with the initial values of variables and parameters presented in Table 1 and the system 
of equations is formulated in the Runge-Kutta scheme. 

 

 
𝑆𝑛+1 = 𝑆𝑛 +

ℎ

6
(𝑘1𝑆 + 2𝑘2𝑆 + 2𝑘3𝑆 + 𝑘4𝑆) (42) 
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𝑉𝑛+1 = 𝑉𝑛 +
ℎ

6
(𝑘1𝑉 + 2𝑘2𝑉 + 2𝑘3𝑉 + 𝑘4𝑉) 

𝐸𝑛+1 = 𝐸𝑛 +
ℎ

6
(𝑘1𝐸 + 2𝑘2𝐸 + 2𝑘3𝐸 + 𝑘4𝐸) 

𝐼𝑛+1 = 𝐼𝑛 +
ℎ

6
(𝑘1𝐼 + 2𝑘2𝐼 + 2𝑘3𝐼 + 𝑘4𝐼)                                                        

𝑇𝑛+1 = 𝑇𝑛 +
ℎ

6
(𝑘1𝑇 + 2𝑘2𝑇 + 2𝑘3𝑇 + 𝑘4𝑇) 

              𝑅𝑒𝑠𝑛+1 = 𝑅𝑒𝑠𝑛 +
ℎ

6
(𝑘1𝑅𝑒𝑠 + 2𝑘2𝑅𝑒𝑠 + 2𝑘3𝑅𝑒𝑠 + 𝑘4𝑅𝑒𝑠) 

𝑅𝑛+1 = 𝑅𝑛 +
ℎ

6
(𝑘1𝑅 + 2𝑘2𝑅 + 2𝑘3𝑅 + 𝑘4𝑅) 

 

The coefficient value of equation (42) is obtained as follows: 

 𝑘1𝑆 = 𝛼(1 − 𝜉) + 𝜃𝑉𝑛 + 𝜌𝑅𝑛 − (𝛽𝐼𝑛 + 𝜇)𝑆𝑛 
𝑘1𝑉 = 𝛼𝜉 − (𝜃 + 𝜇)𝑉𝑛 

𝑘1𝐸 = 𝛽𝐼𝑛𝑆𝑛 − (𝜀 + 𝜇)𝐸𝑛 
𝑘1𝐼 = 𝜀𝐸𝑛 − (𝜋 + 𝜔 + 𝜎1 + 𝜇)𝐼𝑛 
𝑘1𝑇 = 𝜔𝐼𝑛 − (𝛿 + 𝛾 + 𝜎2 + 𝜇)𝑇𝑛 

𝑘1𝑅𝑒𝑠 = 𝜋𝐼𝑛 + 𝛿𝑇𝑛 − (𝜓 + 𝜎3 + 𝜇)𝑅𝑒𝑠𝑛 
𝑘1𝑅 = 𝛾𝑇𝑛 + 𝜓𝑅𝑒𝑠𝑛 − (𝜌 + 𝜇)𝑅𝑛 

(43) 

 

The initial slope value 𝑘2 for each variable is obtained from the equation 𝑘1 is modified as follows:  

 

 
𝑘2𝑆 = 𝛼(1 − 𝜉) + 𝜃 (𝑉𝑛 +

𝑘1𝑉

2
) + 𝜌 (𝑅𝑛 +

𝑘1𝑅

2
) − (𝛽 (𝐼𝑛 +

𝑘1𝐼

2
) + 𝜇) (𝑆𝑛 +

𝑘1𝑆

2
) 

𝑘2𝑉 = 𝛼𝜉 − (𝜃 + 𝜇) (𝑉𝑛 +
𝑘1𝑉

2
) 

𝑘2𝐸 = 𝛽 (𝐼𝑛 +
𝑘1𝐼

2
) (𝑆𝑛 +

𝑘1𝑆

2
) − (𝜀 + 𝜇) (𝐸𝑛 +

𝑘1𝐸

2
) 

𝑘2𝐼 = 𝜀 (𝐸𝑛 +
𝑘1𝐸

2
) − (𝜋 + 𝜔 + 𝜎1 + 𝜇) (𝐼𝑛 +

𝑘1𝐼

2
) 

𝑘2𝑇 = 𝜔 (𝐼𝑛 +
𝑘1𝐼

2
) − (𝛿 + 𝛾 + 𝜎2 + 𝜇) (𝑇𝑛 +

𝑘1𝑇

2
) 

𝑘2𝑅𝑒𝑠 = 𝜋 (𝐼𝑛 +
𝑘1𝐼

2
) + 𝛿 (𝑇𝑛 +

𝑘1𝑇

2
) − (𝜓 + 𝜎3 + 𝜇) (𝑅𝑒𝑠𝑛 +

𝑘1𝑅𝑒𝑠

2
) 

𝑘2𝑅 = 𝛾 (𝑇𝑛 +
𝑘1𝑇

2
) + 𝜓 (𝑅𝑒𝑠𝑛 +

𝑘1𝑅𝑒𝑠

2
) − (𝜌 + 𝜇) (𝑅𝑛 +

𝑘1𝑅

2
) 

(44) 

 

The initial slope value 𝑘3 for each variable is obtained from the equation 𝑘2 is modified as follows:  

 

 
𝑘3𝑆 = 𝛼(1 − 𝜉) + 𝜃 (𝑉𝑛 +

𝑘2𝑉

2
) + 𝜌 (𝑅𝑛 +

𝑘2𝑅

2
) − (𝛽 (𝐼𝑛 +

𝑘2𝐼

2
) + 𝜇) (𝑆𝑛 +

𝑘2𝑆

2
) 

𝑘3𝑉 = 𝛼𝜉 − (𝜃 + 𝜇) (𝑉𝑛 +
𝑘2𝑉

2
) 

𝑘3𝐸 = 𝛽 (𝐼𝑛 +
𝑘2𝐼

2
) (𝑆𝑛 +

𝑘2𝑆

2
) − (𝜀 + 𝜇) (𝐸𝑛 +

𝑘2𝐸

2
) 

𝑘3𝐼 = 𝜀 (𝐸𝑛 +
𝑘2𝐸

2
) − (𝜋 + 𝜔 + 𝜎1 + 𝜇) (𝐼𝑛 +

𝑘2𝐼

2
) 

𝑘3𝑇 = 𝜔 (𝐼𝑛 +
𝑘2𝐼

2
) − (𝛿 + 𝛾 + 𝜎2 + 𝜇) (𝑇𝑛 +

𝑘2𝑇

2
) 

𝑘3𝑅𝑒𝑠 = 𝜋 (𝐼𝑛 +
𝑘2𝐼

2
) + 𝛿 (𝑇𝑛 +

𝑘2𝑇

2
) − (𝜓 + 𝜎3 + 𝜇) (𝑅𝑒𝑠𝑛 +

𝑘2𝑅𝑒𝑠

2
) 

(45) 
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𝑘3𝑅 = 𝛾 (𝑇𝑛 +
𝑘2𝑇

2
) + 𝜓 (𝑅𝑒𝑠𝑛 +

𝑘2𝑅𝑒𝑠

2
) − (𝜌 + 𝜇) (𝑅𝑛 +

𝑘2𝑅

2
) 

 

The initial slope value 𝑘4 for each variable is obtained from the equation 𝑘3 is modified as follows:  

 

 𝑘4𝑆 = 𝛼(1 − 𝜉) + 𝜃(𝑉𝑛 + 𝑘3𝑉) + 𝜌(𝑅𝑛 + 𝑘3𝑅) − (𝛽(𝐼𝑛 + 𝑘3𝐼) + 𝜇)(𝑆𝑛 + 𝑘3𝑆) 
𝑘4𝑉 = 𝛼𝜉 − (𝜃 + 𝜇)(𝑉𝑛 + 𝑘3𝑉) 

𝑘4𝐸 = 𝛽(𝐼𝑛 + 𝑘3𝐼)(𝑆𝑛 + 𝑘3𝑆) − (𝜀 + 𝜇)(𝐸𝑛 + 𝑘3𝐸) 
𝑘4𝐼 = 𝜀(𝐸𝑛 + 𝑘3𝐸) − (𝜋 + 𝜔 + 𝜎1 + 𝜇)(𝐼𝑛 + 𝑘3𝐼) 
𝑘4𝑇 = 𝜔(𝐼𝑛 + 𝑘3𝐼) − (𝛿 + 𝛾 + 𝜎2 + 𝜇)(𝑇𝑛 + 𝑘3𝑇) 

𝑘4𝑅𝑒𝑠 = 𝜋(𝐼𝑛 + 𝑘3𝐼) + 𝛿(𝑇𝑛 + 𝑘3𝑇) − (𝜓 + 𝜎3 + 𝜇)(𝑅𝑒𝑠𝑛 + 𝑘3𝑅𝑒𝑠) 
𝑘4𝑅 = 𝛾(𝑇𝑛 + 𝑘3𝑇) + 𝜓(𝑅𝑒𝑠𝑛 + 𝑘3𝑅𝑒𝑠) − (𝜌 + 𝜇)(𝑅𝑛 + 𝑘3𝑅) 

(46) 

 

 Equation (42) is simulated with MATLAB 2023 to produce the graph as follows: 

   
(a) Individuals Susceptible (S) (b) Individuals Vaccinated (V) (c) Individuals Exposed (E) 

  
(d) Individuals Infected (I) (e) Individuals Treatment (T) 

           
 

(f) Individuals Resistent (Res) (g) Individuals Recovered (R) 
 

Fig. 3. Distribution Dynamics of Each Population in the SVEITResR Model 
 

Based on Fig. 3 (a), the individuals in the susceptible sub-population (S) in the first year is 39.112.100. 

This decreases over time due to natural mortality and movement of individuals to the exposed sub-

population (E) until it reaches 37.243.600 in the third year. Fig. 3 (b) an increase in the number of BCG 

vaccinated individuals (V) from 523.994 to 998.400, influenced the birth rate and the effectiveness of the 

vaccination program. Fig. 3 (c) and the number of exposed (E) sub-populations increased from 631.493 

individuals and then decreased to 517.857 due to the transfer of individuals to the infected (I) and treated 

(T) sub-populations. 
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Fig. 3 (d), result in infected sub-population (I) initially amounted to 100.795 individuals decreased 

due to the transfer of individuals to the resistant sub-population (Res) and treatment (T), then increased to 

251.409 individuals due to the increase in the number of exposed individuals. Fig. 3 (e), experiencing an 

increase in the number of individuals in the first-line treatment (T) sub-population due to the movement of 

infected individuals (I), will stabilize significantly after treatment (T) is completed and move to the 

recovered (R) sub-population. Optimal treatment duration helps reduce drug resistance. In Fig. 3 (f), the 

number of individuals in the resistant (Res) sub-population increased significantly from 2.112 in the first 

year to 7.516 in the third year. This increase was due to treatment failure in some individuals who then 

switched to the resistant (Res) sub-population and received second-line treatment to recover or moved to 

the recovered (R) sub-population. The rate of increase is influenced by factors such as non-adherence to 

treatment or bacterial mutations that increase resistance. 

In Fig. 3 (g), the number of individuals in the recovered (R) sub-population increased from 63.080 in 

year one to 264.871 in year three. This indicates successful treatment of individuals from the treatment (T) 

and resistant (Res) sub-populations, reflecting adherence to therapy, drug effectiveness, and disease control 

programs. Individuals recovered (R) remain at risk of re-exposure and enter the susceptible (S) sub-

population due to loss of immunity. 

3. RESULT AND DISCUSSION 

Based on the SVEITResR model, the rate of individuals first-line treatment with rifampicin and isoniazid 

is denoted as 𝜔. The results that a treatment for 2 months with a parameter value of 𝜔 = 0.167, resulted in 

a basic reproduction number (𝑅0) of 2.2756. If a 6-month treatment procedure with a parameter value of 𝜔 

= 0.5 reduced the basic reproductive rate (𝑅0) to 1.0987. Treatment duration can reduce the basic 

reproduction number (𝑅0), prevent resistance and control the spread of the disease. The duration of first-

line treatment and adherence to that duration is very important to prevent the occurrence of resistance in 

the spread of tuberculosis in the East Java region. 

The SVEITResR model has a lower basic reproduction number (𝑅0) than the SVEITR model, despite 

including a resistant population. Second-line treatment is effective in reducing transmission from resistant 

individuals and vaccination prevents infection, reducing the number of individuals who become resistant. 

With intensive treatment and appropriate medical interventions, the proportion of resistant individuals can 

be reduced, and the 𝑅0 value remains low even when resistance is considered. The importance of effective 

medical intervention to control the tuberculosis outbreak. 

The basic reproduction number (𝑅0) SVEITResR model of 1.0987 indicates that tuberculosis will still 

spread in East Java, Indonesia. In comparison, research by Ronoh et al., (2016) with case studies in Africa 

and South Asia, the SVEIResR model a basic reproduction number (𝑅0) of 10.4348 due to ineffective 

treatment drug resistance (MDR-TB) extends the infection period and increases the transmission rate (β) if 

the model assumes contacts of 5-10 people/day (high β), then the value of 𝑅0 can increase. 

Research by Ochieng, (2024) with case studies in Kenya, the SVEITRS model produced a 

reproduction number (𝑅0) of 1.005341. TB can still spread at a low rate, estimating the time to double 

cases to 5-10 years. The SIR model in Kazakhstan research by Kalizhanova et al., (2024) 𝑅0 value of 0.2960 

indicates the epidemic is a phase of decreasing susceptible population and recovered over time. The success 

of Kazakhstan's health programs rapid diagnosis, vaccination, and treatment of MDR-TB with a success 

rate of 82.5% contributed to reducing the spread of the disease and increasing the number of cured patients. 

The SVEIR-I model in China research by Liu et al., (2023) 𝑅0 value of 1.8605 indicates the disease 

has the potential to become endemic if no increase in vaccination or treatment. The model is a nonlinear 

incidence rate (the transmission rate is not constant) and depends on the number of infected and susceptible 

individuals. Complex interactions between susceptible and infected populations increase the likelihood of 
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transmission, especially in densely populated areas. Research by Tamhaji & Hamdan, (2023) with case 

studies in Malaysia, the BSEIR model produced a reproduction number (𝑅0) of 1.955. The addition of the 

immigration parameter in the model suggests that the arrival of new individuals from areas with high TB 

prevalence increases the number of susceptible and infected individuals in Malaysia. 

4. CONCLUSION  

4.1 Concluding Remarks 

The stability analysis of the SVEITR model system the existence of two equilibrium points, the 

disease-free equilibrium point with 𝛲0 = (37.301.726; 1.212.907; 0; 0; 0; 0; 0) is not stable, and the 

endemic equilibrium point 𝛲1 = (28.678.522;  1.212.907;  956.482;  597.944;  313.430; 103.050) 

asymptotically stable with the value of the basic reproduction number (𝑅0 = 1.3007). It can be concluded 

that the spread of tuberculosis in East Java has the potential to outbreak with each infected individual can 

transmit the disease by 1.3007 to other individuals. 

The stability analysis of the SVEITResR model system the existence of two equilibrium points, the 

disease-free equilibrium point with 𝛲0 = (37.301.726;  1.212.907;  0;  0;  0;  0; 0) is not stable, and the 

endemic equilibrium point with 𝛲1 = (33.951.569;  1.212.907;  230.497;  121.715;  60.857;  27.541;   
68.331) is asymptotically stable with the value of the basic reproduction number (𝑅0 = 1.0987). It can be 

concluded that the spread of tuberculosis disease with Multidrug Resistance Effect (MDR-TB) in East Java 

has the potential to outbreak with each infected individual can transmit the disease by 1.0987 to other 

individuals. 

Simulation results using 4th-order Runge-Kutta show the number of individuals exposed (E) to 

tuberculosis will decrease significantly after 2024, while the number of infected (I) individuals is projected 

to continue increasing until 2025 before reaching a steady state the next year. The effectiveness of 

vaccination as well as first- and second-line treatment an important role in reducing the number of exposed 

and infected individuals and significantly increasing the number of recovered (R) individuals. 

The tuberculosis (TB) situation in Indonesia contributes to the spread of the epidemic, and it is 

important to ensure that the value of the basic reproduction number (𝑅0 < 1) to stop the spread of the 

disease. Numerical and sensitivity analysis of the 𝑅0 parameter way to reduce the number of infected 

individuals is to increase the transmission rate (β) and recovery rate (γ). A comparison between models 

with and without resistance shows that TB infection with resistance decreases due to second-line treatment. 

Control strategies such as increased vaccination, early diagnosis, and effective treatment are critical to 

controlling or eliminating the disease from the population, as TB is still a health problem that has not been 

fully eradicated in Indonesia. 

4.2 Suggestion 

After analysing the mathematical model of tuberculosis disease spread, the author proposes several 

development suggestions for further research, such as adding new parameters and populations, such as 

HIV-TBC and advanced resistance such as extensively drug-resistant tuberculosis (XDR-TB) that requires 

third-line treatment. SVEITResR model can be developed by adding optimal control with the use of 

antibiotic parameters in accelerating the healing of infected individuals and shortening the spread of 

tuberculosis disease. Methods that can be applied include the Minimum Pontryagin Principle (MPP) or 

Linear Quadratic Regulator (LQR). 
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