INFLUENCE OF DIFFERENT ANTI-REFLECTIVE COATING ON SILICON SOLAR CELLS IN PVLIGHT HOUSE

NUR A'INUL MARDHIAH BINTI KAMAL

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics In the Faculty of Applied Sciences Universiti Teknologi MARA This Final Year Project Report entitled "Influence of Different Anti-Reflective Coating on Silicon Solar Cell in PVlight House" was submitted by Nur A'inul Mardhiah binti Kamal in partial fulfilment of the requirement for the Degree of Bachelor of Sciences (Hons.) Physics, in the Faculty of Applied Sciences and was approved by:

0

Pn Siti Hajar Mohmad Salleh Supervisor B. Sc. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr Siti Zulaikha Mohd Yusof Project Coordinator B. Sc. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Rosyand Afindi Zaman Heads of Programme B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: 25th JULY 2025

ABSTRACT

INFLUENCE OF DIFFERENT ANTI-REFLECTIVE COATING OF SILICON SOLAR CELLS IN PVLIGHT HOUSE

Crystalline silicon (c-Si) is the most widely used material in solar cells, however, its high surface reflectance limits light absorption and reduces overall efficiency. To overcome this issue, light trapping (LT) strategies is required to boost light absorption and overall performance. This study investigates several potential antireflective coating (ARC) materials, three different ARC thicknesses, and various surface texturing techniques to improve light absorption and enhance the performance of crystalline silicon (c-Si) solar cells through numerical simulation. Ray tracing simulations of LT schemes in c-Si were also conducted across the 300-1200 nm wavelength range. A c-Si wafer with a thickness of 200 μm was used, and the solar spectrum was set to AM1.5G under normal incidence. ZnO is chosen as the best ARC on top of several thickness starting from 75-125 µm. The optimum thickness that results in maximum current density is carry on for further modification on surface texturing. It was shown that ZnO with 75 µm thickness and front random inverted pyramid texture revealed as the best performance with the highest current density of 41.80 mA/cm². This show enhancement of 63.35% compared to c-Si reference scheme with value of 25.59 mA/cm². This significant improvement is due to perfect refractive index of ZnO and optimum thickness that follow quarter wavelength that enhance optical absorption. Additionally, the random inverted pyramid texture increases the optical path length through multiple internal reflections, enhancing light absorption within the silicon layer and improving overall efficiency.

TABLE OF CONTENTS

		PAGE
ACK	NOWLEDGEMENT	i
	TRACT	ii
ABSTRAK		iii
TABI	LE OF CONTENTS	iv
	OF TABLES	vi
	FIGURES	vii
LIST	OF ABBREVIATIONS	ix
CHA	PTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Questions	4
1.4	Objectives	4
1.5	Significance of study	5
1.6	Expected Output	6
CHA	PTER 2 LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Renewable Energy	7
2.3	Solar Energy	9
2.4	Solar Cells	12
2.5	Type of Solar Cells	13
2.6	Silicon Solar Cells	14
2.7	Working Principle of Solar Cells	15
2.8	Optical Properties of Solar Cells	17
	2.8.1 Reflection	17
	2.8.2 Absorption	17
	2.8.3 Transmission	18
2.9	ϵ	19
	Properties of Anti Reflective coating	19
2.11	Type of Anti Reflective Coating on Silicon Solar Cells	20
	2.11.1 Silicon Nitride Anti Reflective Coating	20
	2.11.2 Silicon Dioxide Anti Reflective Coating	20
	2.11.3 Titanium Dioxide Anti Reflective Coating	21
	2.11.4 Aluminium Oxide Anti Reflective Coating	21
	2.11.5 Zinc Oxide Anti Reflective Coating	22
2.12	ϵ	22
2.13	Surface Texturing Techniques	23
CHA	PTER 3 RESEARCH METHODOLOGY	25
3.1	Introduction	25
3.2	PV Lighthouse Simulation	25

3.3	Wafer Ray Tracer by PV Lighthouse	27
3.4	Parameters of The Study	28
3.5	Model of LT Scheme	30
3.6	Calculation of Maximum Potential Photocurrent Density, J _{max}	32
	3.6.1 Current Density, J _{max}	32
	3.6.2 Current Density Enhancement, J _{max} Enhancement	33
3.7		34
СНА	APTER 4 RESULT AND DISCUSSION	36
4.1	Introduction	36
4.2	Data and Results of Each Parameter	37
	4.2.1 Material of Anti Reflective Coating	37
	4.2.2 J _{max} Performance Measurement	47
	4.2.3 Thickness of Anti Reflective Coating	50
	4.2.4 J _{max} Performance Measurement	57
	4.2.5 Texturing of Anti Reflective Coating	59
	4.2.6 J _{max} Performance Measurement	66
СНА	APTER 5 CONCLUSION AND RECOMMENDATIONS	69
5.1	Introduction	69
5.2	Conclusion	69
5.3	Recommendation	71
REF	ERENCES	72
APP	ENDICES	83
CUR	RRICULUM VITAE	111