EXPLORING THE CARBON CAPTURE TECHNOLOGY USING PHOTOACTIVATED SOLID-STATE: A COMPREHENSIVE REVIEW

AHMAD ZULHILMI BIN ZULKIFFLI

BACHELOR OF SCIENCE (Hons.) PHYSICS FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

EXPLORING THE CARBON CAPTURE TECHNOLOGY USING PHOTOACTIVATED SOLID-STATE: A COMPREHENSIVE REVIEW

AHMAD ZULHILMI BIN ZULKIFFLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences
Universiti Teknologi MARA

JULY 2025

This Final Year Project Report entitled "Exploring The Carbon Capture Technology Using Photoactivated Solid-State: A Comprehensive Review" was submitted by Ahmad Zulhilmi Bin Zulkiffli in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Physics, in the Faculty of Applied Sciences, and was approved by

Dr. Muhammad Zharfan Mohd Halizan Supervisor B. Sc. (Hons.) Physics Faculty of Applied Sciences University Teknologi MARA 02600 Arau Perlis

Dr. Siti Zulaikha Mohd Yusof Project Coordinator B. Sc. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Rosyaini Afindi Zaman Head of Programme B. Sc. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: 25 JULY 2025

ABSTRACT

EXPLORING THE CARBON CAPTURE TECHNOLOGY USING PHOTOACTIVATED SOLID-STATE: A COMPREHENSIVE REVIEW

The urgency surrounding global warming has necessitated considerable advancements in carbon capture technologies; however, issues such as environmental conditions of temperature and high band gap of materials continue to limit photoactivated solid-state systems from performing well. The present study aims to undertake a critical review of carbon capture technologies involving photoactivated solid-state materials in order to find nascent solutions for overcoming these hurdles. The study would address three major research questions that touch on what the best materials for adsorbing CO2 would be efficient, the possibility to lessen the band gap of the existing materials to improve the performance of those materials in the industrial carbon capture and which materials demonstrate high mechanical and thermal stability under the operational stresses of carbon capture. This review proposes a framework for selecting and optimizing materials according to efficiency, robustness, and scalability with respect to photoactivated carbon capture by examining current progress, material characteristics, and experimental information. The materials expected outcomes from this work will include an exhaustive evaluation of state-of-the-art materials, identification of promising candidate materials, and finally, a host of practical recommendations on how to enhance and optimize photoactivated carbon capture. The review will help the scientific community by overcoming critical holes in current research, paving ways to better carbon capture solutions, and complementing global efforts toward managing climate change.

TABLE OF CONTENT

		Page
ACKNOWLEDGEMENT		iv
ABSTRACT		V
ABSTRAK TABLE OF CONTENT		vi vii
LIST OF FIGURES		X
CHA	PTER 1 INTRODUCTION	
1.1	Background	1
1.2	Problem Statements	3
1.3	Research Questions	4
1.4	General Objectives	4
1.5	Significant of Study	5
CHA	PTER 2 LITERATURE REVIEW	
2.1	Literature Review of Background	6
2.1.1	Perovskite	7
2.1.2	Ceramic	10
2.1.3	Composite	13
2.1.4	Carbon Based Nanomaterials	17
2.1.5	Photocatalyst Materials	20
2.1.6	Trends	23
2.2	Setting the Research Ouestions	24