

**A SINGLE PHASE AC TO DC RECTIFIER EMPLOYING SOFT
SWITCHING TECHNIQUE**

This thesis is presented in partial fulfillment for the award of the Bachelor of
Electrical Engineering (Hons)
UNIVERSITI TEKNOLOGI MARA
MALAYSIA

NURUZANNA YAHAYA

**Faculty of Electrical Engineering
UNIVERSITI TEKNOLOGI MARA
40450 Shah Alam
Selangor Darul Ehsan**

ACKNOWLEDGEMENT

Syukur Alhamdulillah, thank you to Allah S.W.T for His blessing upon permitting me in completing this research proposal of mine, entitled "**A SINGLE PHASE AC TO DC RECTIFIER EMPLOYING SOFT SWITCHING TECHNIQUE**".

Firstly, I would like to express my deepest feeling of gratitude and appreciation especially to my Final Year Project supervisor, Dr. Muhammad Nawawi Seroji for his valuable guidance, advices, encouragement, dedication and thoughtful criticisms towards the accomplishment of this research project.

I would also like to take this opportunity to give my special thanks to all my friends for their support, co-operation and kind assistance. Besides that a great appreciation to individuals, firms and other party with their experiences and knowledge that they had contributed in helping me to complete this research project.

Last but not least, special appreciation to all my family members for their moral and financial supports, care and encouragement throughout the course of my study at Universiti Teknologi MARA.

THANK YOU

ABSTRACT

A single phase AC to DC rectifier employing soft switching technique is simulated in this paper. The rectifier used is boost rectifier whereby we can achieve unity power factor, low total harmonic distortion and high efficiency. The soft switching technique in this rectifier is achieved using zero current switching during turn on while during turn off, it used zero voltage switching. In this paper, the rectifier and its modes of operation are explained. The method of control is assessed and the simulation results are obtained from doing a simulation of a boost rectifier using an IGBT switch.

TABLE OF CONTENT

Declaration	iv
Dedication	v
Acknowledgement	vh,
Abstract	vii
Table of Content	viii
List of Tables	x
List of Figures	x

CHAPTER	PAGE
1 INTRODUCTION	
1.1 Hard Switching and Soft Switching Techniques	1
1.2 Problems Statement	4
1.3 Objectives	5
1.4 Scope of Work	5
1.5 Thesis Organization	6
2 LITERATURE REVIEW	
2.1 Insulated Gate Bipolar Transistor (IGBT)	7
2.2 Single Phase AC to DC Rectifier Circuits	11
2.2.1 Half Wave Rectifier	11
2.2.2 Full Wave Rectifier	12
2.3 Single Phase Boost Rectifier	14
2.3.1 Continuous Mode	17
2.3.2 Discontinuous Mode	19
2.4 Resonant Switching Technique	20
2.4.1 Zero Current Switching	21
2.4.2 Zero Voltage Switching	22
2.4.3 Zero Voltage Switching, Clamped Voltage	23
2.5 Control Method for the Input Current	24

CHAPTER 1

INTRODUCTION

1.1 Hard switching and Soft Switching Techniques

In the 1970's, conventional PWM power converters were operated in a switched mode operation. Power switches have to cut off the load current within the turn-on and turn-off times under the hard switching conditions. Hard switching refers to the stressful switching behavior of the power electronic devices. The switching trajectory of a hard-switched power device is shown in Figure 1.1. During the turn-on and turn-off processes, the power device has to withstand high voltage and current simultaneously, resulting in high switching losses and stress. Dissipative passive snubbers are usually added to the power circuits so that the dv/dt and di/dt of the power devices could be reduced, and the switching loss and stress are diverted to the passive snubber circuits. However, the switching loss is proportional to the switching frequency, thus limiting the maximum switching frequency of the power converters. Typical converter switching frequency was limited to a few tens of kilo-Hertz (typically 20 kHz to 50 kHz) in early 1980's.

In the 1980's, lots of research efforts were diverted towards the use of resonant converters. The concept was, to incorporate resonant tanks in the converters to create oscillatory (usually sinusoidal) voltage and/or current waveforms so that zero voltage switching (ZVS) or zero current switching (ZCS) conditions can be created for the power switches. The reduction of switching loss and the continual improvement of power switches allow the switching frequency of the resonant converters to reach hundreds of