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ABSTRACT

Bringing deep learning models for time-series forecasting into production has its challenges in the real world, and
one of these challenges is transitioning from a Python-based development environment to platform-agnostic
software. This paper proposed a modular extensible and easy-to-use Java-based framework for implementing deep
learning time-series forecasting models, using simulated rainfall forecasting as a specific case study. One of the
benefits of the case study of rainfall forecasting was the number of datasets available to work with and its relevance
to environmental monitoring. The framework is able to seamlessly implement Long Short-Term Memory (LSTM)
models that were trained in PyTorch and exported in the ONNX (Open Neural Network Exchange) format running
inference with DJL (Deep Java Library). Users benefit from the ability to convert Java-native data to DJL
compatible tensors via a custom Translator module in real time or batch for prediction. The framework also
provides an easy-to-use graphical user interface (GUI) built in JavaFX to allow users to import CSV datasets to
predict, visualize results, and export outputs without any advanced programming experience. In the rainfall
forecasting case imposed for the case study analysis, the predictive accuracy was limited by the dataset; however,
the main purpose of the work was to develop a reusable, accessible, and extensible deployment platform for
ONNX-based deep-learning time-series models. The framework provides the foundation to allow for practical use
of machine-learning workflows in a variety of applications, including environmental management, logistics, and
industrial automation. The modularity of the framework and cross-platform development help to fill the gap with
existing deployment technologies which offer a scalable pathway of operationalizing machine learning in practice
with modern models such as deep learning. The proposed framework provides accessible solution between
advanced model development and deployment covering wide use cases of machine learning.

Keywords: Rainfall prediction; Long Short-Term Memory (LSTM); Deep learning; Time-series forecasting;
Deep Java Library (DJL)

Abbreviations

LST™M Long Short-Term Memory
ONNX Open Neural Network Exchange
csv Comma-separated value

LSTM Long Short-Term Memory

DIL Deep Java Library

1.0 INTRODUCTION

Rainfall prediction remains an enduring challenge in the field of meteorological science because of the
dynamism, nonlinearity, and multivariate characteristics associated with atmospheric systems [1], [2]. Weather is
changeable and it depends on the interaction of a multitude of variables, including temperature, humidity, wind,
and atmospheric pressure, which are complexly related and not easily modelled using rigorous statistical or
numerical methods [1]. Traditional methods have proven useful for producing baseline estimates, but these do
very poorly in capturing long-term temporal relationships, especially short- to long-range nonlinear dependencies
and interactively innovative features, particularly for the shorter to medium forecasting horizons. The need to
capture these relationships is critical given the importance of rainfall prediction across an array of high-impact
domains which include precision agriculture, flood mitigation, water resource planning, infrastructure resilience,
and disaster risk preparedness and mitigation [3], [4], [5]. Reliable precipitation forecasting is critical for
mitigation and disaster response management [6]. The accurate and timely prediction of heavy rainfall events is

Received on  22.08.2025
Accepted on  26.09.2025
Published on  03.10.2025 90



JAEDS Volume 5 Issue 2 (September 2025)

critical for flood risk management and disaster preparedness. Heavy rainfall prediction begins with the ability to
observe, examine and assess the rainfall data at any given point. Only then can effective measures be taken to
offset any magnitude of climate variations. This provides knowledge to assist in surface and subterranean
hydrological resources planning [7].

Of late, deep learning has emerged as a promising alternative for chronicle data modeling. Long Short-Term
Memory (LSTM) networks are a form of recurrent neural network and have an ability to learn temporal dynamics
from multiple input streams, or multivariate inputs [8]. Their network architecture involves gating mechanisms
and internal memory states, which allow the model to learn that the temporal order of past instances can affect the
future when applying the LSTM architecture using historical data (for example, as when predicting rainfall).
LSTM and other deep models remain attractive where more research is needed, but the gap between the on-going
research and actual application of deep learning systems in practice is large [1], [9], particularly for users who are
not machine learning or Python developers. Most state-of-the-art forecasting models use Python solidifying or
frameworks like PyTorch [10] or TensorFlow, and while these are flexible frameworks, they create problems
when it comes to dropping these models into cross-platform, maintainable software stacks. Non-expert users, the
users who typically put forecasting models into a service like meteorologists, environmental researchers or public-
sector analysts, usually do not have the tools or knowledge to directly deploy and interface these models for real-
time applications. Moreover, production-grade applications need an effective means of not only collecting and
using accurate models, but a sensible and robust pipeline of integrating incoming data, pre-processing incoming
data, executing the models to produce a result, visualizing the result, and integrating this has resulted into a larger
system.

This study addresses those limitations through a new focus on developing, implementing, and distributing a
modular, user-friendly, extensible forecasting application entirely written in Java. Also, the application is a bridge
between high-performance machine learning models and the ability to actually use them in practice, as it unites a
PyTorch-trained LSTM model exported in Open Neural Network Exchange format (.onnx) with the Deep Java
Library (DJL) for deploying ONNX model in a Java context, providing platform-independent, Python-dependent
inference at a relatively efficient speed; all without the typical, traditional Python dependencies and calls.
Additionally, the application is designed with both expert and novice end-users in mind by providing a graphical
user interface (GUI) built upon JavaFX that allows for easily uploading data in CSV format, real time and batch
model inference and visualization (including confidence intervals), and exporting results for offline exploration.

This work does not place emphasis on improving predictive accuracy for the current state and is focused on
building a reusable and extensible software framework for the use of machine-learning models inside operational,
cross-platform forecasting systems. Rainfall prediction is used as an example, but it is important to note that the
system and design are flexible and can be used within any domain, or for any time-series forecasting problem,
which could include energy consumption, traffic flow, or financial queries. In regard to the secondary goals of
this paper, the contribution, in the form of the layered toolkit, the context, scalability, and operational examples
for rainfall forecasting, include: (i) a modular Java package toolkit for the inference of ONNX-based deep learning
models based on DJL runtime, (ii) a custom Translator pipeline for Java native data structures and DJL objects
(tensors) as intermediate data storage for projected pre-batched inference and real-time inference, (iii) an
integrated JavaFX-based GUI that allows non-programmers to work with complex time-series models without
writing code, and (iv) a demonstration of the toolkit architecture, extension, and usage with rainfall forecasting as
an example use case. The address of this gap in tooling and deployment serves to promote advanced time-series
modeling methods and make operationally relevant in a wider scientific, industrial, and decision support capacity.

2.0 RELATED WORKS

Conventional time-series forecasting models such as ARIMA, SVR, and MLR often do not perform well when
predicting atmospheric data, which frequently contain multiple input variables that vary in time and space, because
they are poor at capturing complex inter-variable relationships and long-term dependencies [5], [11], [12], [13].
While LSTM networks and Gated Recurrent Units (GRUs) represent a generational leap forward for accurate
prediction problems, only over the past five years have advanced sequence modeling architectures become widely
available, so that prediction problems now have “Fast Reasoning” architectures capable of automated feature
development from the input data based on temporal dependencies [5], [8]. With LSTMs somewhat uniquely
positioned, models are shown to consistently outperform conventional strategies for short- and medium-term
rainfall forecasting by being able to model inter-variable interactions and long-term temporal variability. Figure
1 represents the general summation of deep learning applications in collaboration with LSTM features,
particularly in this case the application with weather forecasting.
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Figure 1. Network diagram illustrating the correlation between deep learning applications and their usability in
LSTM models for intelligent decision-making features, focusing on their integration in weather predictive
capabilities

Anticipating rain can be difficult but it can utilize data-mining methods to demonstrate how previous weather
data can identify the patterns. Hybrid models used historical rainfall observations and nearby raw data streams,
from remote monitoring devices to abstract the features. In terms of rainfall prediction investment, machine
learning methods can be used regardless of climate or time scale which includes any time interval or CAD for
LSTM architectures [8]. Using a Convolutional Neural Network (CNN), a model was created to predict such
things as monthly rainfall totals for a location [3]. To assess the performance of the system, the mean square error,
mean absolute error, and root mean square error were used. Another research study introduced an LSTM-based
model for predicting rainfall in Jimma, Ethiopia, aimed at enhancing sustainable agricultural methods [14]. The
proposed model's performance was assessed using RMSE, MAPE, NSE, and R? metrics. The LSTM model
successfully predicted daily rainfall with greater accuracy compared to ML models such as MLP, KNN, SVM,
and DT. This LSTM model may serve as a dependable and beneficial resource for forecasting daily rainfall totals
in Jimma, aiding agricultural practices and management.

A research study of hourly rainfall forecasting in western part of Ghana was conducted [1] utilizing data
sourced from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study also developed
Deep Learning models based on the LSTM algorithm. The researchers performed a correlation analysis to find
the various relationships and important parameters/features affecting rainfall. The correlation analysis indicated
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that temperature, pressure, and humidity are the most significant contributors to rainfall in the region. The
proposed LSTM architecture performed the best with a lower MSE and RMSE than the other configuration
models. In the future, the plan is to explore more alternatives of model architecture by increasing the number of
training epochs past 200. A study proposed a CNN-LSTM framework for a multidimensional precipitation index
forecasting model [11]. The model utilized monthly means from Pune, Maharashtra, which are sourced from
world meteorological archival data between the 1970's and 2002. This model efficiently estimated precipitation
in line with expectations using local features while utilizing long-term features well. The model achieved a RMSE
0f 6.752 or 204% better than several traditional time series methods, but the higher computational costs with large
datasets limited the model's possibilities. This highlights some areas for future research and improves the
possibility for applications in precipitation forecasting.

Forecasting rainfall can be difficult because of the complex, dynamic, and changing nature of it and the effects
of climate change. A study compared three modelling approaches for rainfall forecasting: statistical models;
machine learning algorithms; and hybrids of models [15]. The neural networks model for deep learning is to
develop a model to predict regional precipitation using satellite, radar, and ground data. The deep learning model
uses the data mining (DM) and machine learning (ML) techniques [8]. Hybrid models that incorporate
combination remote sensing data and machine learning techniques need more research because of the small
number of applications which are able to model problem instances accurately. Only a small handful of researchers
have been able to predict rainfall accurately [8]. A comparison study has evaluated the Artificial Neural Network
(ANN), Simple Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) techniques [9]. LSTM
reported the best performance in accuracy using Mean Absolute Percentage Error (MAPE) and Root Mean Square
Error (RMSE). The research team concentrated on cold region river systems by using LSTM modelling to assist
with the future challenges associated with modelling flood forecasting in changing climate conditions. For the
modelling system, hourly USGS gage water level data were used to inform the LSTM model, which resulted in
encouraging findings and potential improvements in flood forecasting short-term prediction capabilities and
warning systems. However, to move forward, considerable effort must be made in developing longer-term
prediction of flood forecasting methods and techniques and determining the accuracy.

The variability and skewedness of rainfall distribution means that modeling rainfall brings its own level of
difficulty, since numerical weather prediction (NWP), which requires discretely gridded simulations, adds
complication [16]. Furthermore, the resolution of the grid also influences the bias in rainfall estimations. For
example, a deep neural network (DNN) implementation had loss function optimization that tends to represent
heavy rainfall events effectively [16]. The U-Net based DNN led to improvements in heavy rainfall event
prediction that ranged from two times to over six times in water level forecast skill through loss function tuning
to learn the tail distributions better. In terms of in-depth analysis of rainfall distribution prediction through LSTM,
a research synthesis was conducted where the analysis of 94 articles that used LSTM since 2001 was performed
to review short-term forecasting of flood events [17]. The research synthesis suggested that hybrid model use is
superior to standalone models and that the combination of model and input is crucial for good operational
forecasting accuracy.

Climate models assess climate change's effect on flood risk and extreme precipitation, but they tend to have a
lower spatial resolution, leading to less precision [18]. One study employed a Deep Learning (DL) approach in
which a reanalysis product was used as input to achieve greater accuracy for precipitation predictions. This
particular research demonstrated a special TRU-NET model, employing an encoder-decoder structure, which
equally uses 2D cross-attention [18]. The TRU-NET results were shown to have less RMSE and MAE than typical
DL models and state-of-the-art dynamical models, while confidence metrics were produced for all seasons and
locations. Another study indicated a new and original Conv3D-GRU model for short-term rainfall intensity
predictions based on radar, called a Conv3D-GRU, which was able to successfully analyse features from radar
echo map image features while enhancing accuracy in their forecasting [5]. A proposal for a low-cost IoT system
capable of automatic rainfall recording and monitoring also produced model precision with rainfall predictions,
and a new graph neural network methodology was also introduced that had a much higher degree of precision in
prediction of regional heavy rainfall by modeling spatial dependencies [7]. Testing recent models on a 72-month
dataset, validation indicated that the synthetically produced approach could estimate heavy rainfall with regional
applicability in areas of limited resources or where weather observations are sparse.
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3.0 RESEARCH FRAMEWORK

The use of LSTM models in the operational production environment is typically limited. While a lot of LSTM
models are being implemented in Python, there is usually the need for specialized systems that cannot leverage
the entirety of the programming language library. Advances in the formats for exchanging modeling formats,
specifically the Open Neural Network Exchange (ONNX) format and flexible runtimes like the Deep Java Library
(DJL), have provided new deployment of a pre-trained machine learning or deep learning model almost anywhere
it can be connected [19]. The work in this paper takes that gap in the research and the behaviour of implementing
deep learning models by implementing a cross-platform implementation of a LSTM-based rainfall forecasting
system that leverages the predictive capabilities of deep learning, but is fully deployable across several systems
and ecosystems, made possible with Java and ONNX.

3.1 System architecture

The architecture of the cloud-based forecasting toolkit that has been proposed is predicated on modularity,
usability, and the cross-platform deployment of deep learning models for time-series forecasting. While LSTM
networks have been shown to work well with sequential data like weather variables, the focus of the proposed
toolkit lies in the software engineering aspects of fielding models in desktop environments, utilizing a layered
abstraction that can promote better maintainability and extensibility. Figures 2 and 3 are both representations of
the proposed development workflow methodology for input and output process in relation with data inferencing.

The proposed system comprises of four primary layers:
Model Training {Python,
PyTorch)

!

CS8V Dataset Import

Export Model (ONNX)

JavaFX GUI
Translater Module Visualization/Export e IS (196 ) (e
Application)

! 1

| | DJL Inference Engine | |
l /Data Preprocessing (JavaFX

culy

'

Translator: Java Data to Tensor

I

DJL Inference (Prediction)

!

Results: Visualization/Export

ONNX Model Prediction Output

Figure 2. System architecture of the proposed Figure 3. Workflow diagram from training phase to
development prototype prediction and data instance export for further
analysis
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i. User interface layer

The user interface was developed using JavaFX, allowing the user to visually interact with the system without
needing to parse code. The user can submit comma-separated value (.csv) file which contains time-series data
along with a meteorological feature (e.g. humidity threat and temperature). Once uploaded, and depending on the
invocation of the models to make forecasts using the model controls that are embedded, the user will receive
output and immediate feedback. The user can generate plots of varying dependencies, including line plots or
scatter plots, with optional confidence intervals for improved interpretability of forecasted values. As an example,
the user may upload rainfall recorded in Malaysia in July 2025 to predict July for the same year using the LSTM
model, ultimately producing plots of predicted trends. The potentiated results can be saved to an image file and/or
an Excel or CSV spreadsheet system for reporting and/or analysis.

ii. Data handling layer
The data-processing element is the tool that transforms input values into the structure used by the model. The
process involves a variety of processing activities:

a) Validation: 1t ensures that the uploaded documents contain all the required fields and the appropriate
formatting of the input. If the features are missing or wrongly formatted, the values would either be
highlighted for the user to correct or, in the case of with missing data, would be imputed [20].

b) Normalization: It normalizes input features either min-max normalization (rescale feature from [0,1]) or
z-score normalization (which creates a feature mean of zero and variance of one) depending on which
normalization the users have chosen [21], [22]. Normalization is needed so that the different inputs to
the neural network have common numerical behaviour.

c) Creation of Sliding Windows: The application will take raw sequential data and partition into overlapping
windows of the user-specified size [23]. For example, with a fixed window size of 10 and 4 input features
(temperature, humidity, wind-speed, and pressure), each sliding window would produce tensors of shape
[batch_size, 10 (number of historical time-steps), 4 (number of files)]. Each window can be thought of
as capturing a sequence of ten continuous time-steps that the model will use for forecasting a future value
(in this case, rainfall at the next time point).

These changes are managed internally with Java data structures, and the result is forwarded to the model
integration layer in a format suitable for tensor operations.

iii. Model Integration layer
The model integration layer is the engine behind the system which contains the execution of the ONNX-
encoded LSTM model using the Deep Java Library (DJL) inference engine. The model integration layer hides the
challenges of deep-learning inference and allows pre-trained models to be used in a Java application. The ONNX
model is developed in a contained environment with PyTorch and then incorporated into the application using the
model loading API provided within the DJL. The RainfallBatchTranslator is a custom Translator class responsible
for input and output translations.
e Input translation: Translates a 3D Java float array (1,10,4) into DJL’s NDArray, the shape of the input
must match the time and feature dimensions expected by the model.

e  Output translation: Extracts and organizes the models predicted output (typically one float value for
estimated rainfall in mm) from the output tensor.

The RainfallBatchTranslator allows concurrent translation of multiple sequences that allows batch inference
predicting rainfall over different sites or moments in time. A batch of 50 samples, each with 10-time steps and 4
features, are structured as a tensor of shape [50, 10, 4] and this accommodates the processing of samples. This
layer can be treated the same as any other model which allows for any ONNX-exported time-series regression
model on the market to replace the LSTM, while also enabling other forecasting tasks such as energy consumption
or equipment breakdown predictions.
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iv. Visualization layer

The last layer deals with output visualization and interpretation. When inference is complete, the results are
fed into a visualization module. The visualization module displays the predictions in chart form using JavaFX
components (for example, LineChart, or AreaChart) and includes options for confidence intervals and/or
historical trends. Users can also toggle various visual components on or off, export figures as PNGs, or as Excel
files, or explore data interactively. For example, if a user wants to compare predicted rainfall to historical averages,
they could overlay predicted output with raw data points in CSV, within the application interface. The
visualization layer adds interpretability to communicate results, especially important when a decision can be made
but stakeholders are not aware of the mechanics of the model. Figure 4 highlights the recent main contribution of
LSTM applications in automated intelligent decision-making processes; in this scope emphasizing on the
utilization of LSTM for the purpose of predicting advanced weather outcomes.

LSTM Applications in Weather Forecasting

Overview

LSTMSs retain memory cf past inputs Temporal Dependencies

LSTMSs capture complex relationships Non-linearity Motivation

LSTMs adapt to changes over time Cynamic Nature

-
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Figure 4. Visualization on the concept flow of LSTM application for weather forecasting
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3.2 Data Handling and Preprocessing

The system has two components, and both require input datasets in CSV format where these datasets have
rows of observational records representing meteorological events with timestamps. Suggested features tested in
this study include height, minMeanTemp, maxMeanTemp, meanRelHum, and rainfall. Attention to preprocessing
is important for valid inference, as neural networks can be affected by the ranges of input values, missing values,
and boundary conditions. The data handling and preprocessing modules are critical for transforming raw weather
data into systematically organized model input. Table 1 presents the five main parameters for calculating rain
precipitation percentages.

Since there was not any tool made available to convert ONNX modelling features from comma-separated
value datasets, this study developed a Python script specialized for rainfall prediction using tabular meteorological
data. This script functions to read in a CSV file, clean its target and numeric columns, manipulate the non-valid
or missing data, performed one-hot encoding for the categorical variable "state," and standardized features using
a StandardScaler for reproducibility. Subsequently, the dataset is trained by utilizing an MLPRegressor neural
network where the model can be saved at any point in the pipeline. The saved model and StandardScaler are
exportable or translated into ONNX format. The script is also able to plot regression model prediction for any
record with a provided sample pulled from the pipeline, with a debugging section to plot the transformed features
and also the prediction, utilizing the data from the instance selected. The data used for this project were obtained
from the Department of Statistics Malaysia, which included mean temperature, rainfall and mean relative humidity
data from 2000 to 2021 (https://archive.data.gov.my/data/dataset/mean-temperature-rainfall-and-mean-relative-
humidity-malaysia/resource/15b3c8a2-ef0d-4044-8fc1-f261fa9cd7b0).

The framework for the research adopts an automated, modular pipeline for rain prediction with the reference
of Actual (ground truth precipitation measurement from official dataset) and Prediction (values derived from
LSTM predictive modelling) columns from CSV files. The data gleaning is the next step which includes removing
all spaces and removing empty columns or columns with the wrong format. Continuous features are standardized
with a typical z-score method yielding a mean of 0 and variance of 1 removing bias from each individual feature
to attempt to stabilize the modeling. Exploratory data analysis is conducted to check summary statistics and find
anomalies to be removed. Verified datasets are split into independent training and test sets to maintain rigour
when modeling the predictive function for the model development. Clean datasets from training and test sets will
produce visualizable results by means of how data are displayed using time series plots while preserving the values
for reproducibility, transparency and explainability.

Table 1: The analysis on feature variables utilized for capturing rain precipitation frequency referenced from
Malaysia’s 2000-2021 annual rain dataset retrieved from Department of Statistics

Feature Importance Explanation Role in Prediction
The "state" variable captures . -y
> variable capture Influencing model predictions based
geographic variations in rainfall . .
state Important on regional climate and topography
patterns .
differences.
Elevation from sea level that . .
. . . Determines relative temperature,
height Important  affects climate and rainfall o
pressure, humidity changes
Minimum mean temperature of the
. Very lowest average temperature Affects moisture, dew point, and
minMeanTemp . . .
Important  representing the timespan range rainfall
Maximum mean temperature of the
Ve highest average temperature . .
maxMeanTemp Y & verage temperatu Influences evaporation and rainfall
Important  representing the timespan range
Mean relative humidity
representing maximal amount of air Measures air's moisture content
meanRelHum Important . . . e
holding at given temperature affecting precipitation
Target variable that is th li .
. Very aree .V%Ha‘.b ¢ that is the baseline Model predicts precipitation amount
rainfall of precipitation amount recorded DU
Important over specific time

over time
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The preprocessing module reads the labelled CSV files into an array of numbers, normalizes the data with
sliding window normalization for overlapping sequences and marks any rows that were malformed. The values
that were normalized are then reshaped into a 3D tensor for the inputs to the ONNX model to assist in more
accurate predictions. After the normalized values have been transformed, a tensor is created, and the data are pre-
structured for the ONNX model. This adds to rigour used when constructing, evaluating, and predicting from the
testing and the training sets.

3.3 Model overview

At the predictive core of this system is a Long Short-Term Memory (LSTM) neural network, selected because
its architecture is particularly suited for learning long-term dependencies within time-series data. The LSTM
model specifies a regression architecture to predict rainfall by estimating the total rainfall in the future, based on
past consecutive samples of meteorological observations. The variable nature of atmospheric conditions could be
studied as a spatiotemporal phenomenon and therefore through interrelated input variables, temporal behaviours
could be learned and incorporated into good predictive models which provide reliable information within such
densely variable environments. Figure 5 lists down the included functionality classes encased with the proposed
LSTM application system development. The toolkit utilizes a deep learning model based on the LSTM
architecture. The LSTM architecture can model sequential data apart from functioning to model long-range
dependencies in time-series forecasting. LSTMs include memory cells and gating mechanisms, which allow them
to retain historical memory while ignoring noise in time. LSTMs work arbitrarily well to model the statistical
relationships of meteorological variables and delayed precipitation impacts. For the research scope, the developed
system modelling implements a 10-step sliding window to evaluate multivariate weather data, based on
temperature, humidity, wind speed and atmospheric pressure (independent variables), with precipitation
represented as the dependent variable. The 3D structure of the model allows dynamic modelling of temporal trend
change, particularly with respect to precipitation. The model is constructed with one LSTM layer containing 16
hidden units and dropout probability set to 0.2 to avoid overfitting. The second layer is a single-density layer that
predicts the input as rainfall in millimetres. The model is designed and trained using PyTorch [10] due to its
usability, speed, and predictive ability. After training is done, the model is exported for use in an ONNX format,
allowing the model to be imported across programming environments. Within a Java application, the Deep Java
Library (DJL) can execute ONNX code using ONNX runtime, using an instance of a Translator class, which
converts Java-native types into DJL’s NDArray tensors for ONNX to process, resulting in predictions.

Load Madel Model Status Update
Load CSV Table Data Display
— Progress Visualization

— Metrics Display
- Clear Data

Show Graphs
o Bar Chart

Figure 5. Diagram for the User Interface (UI) flow of the proposed research method

Predict
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The system offers single-instance and batch predictions with the use of RainfallBatchTranslator, which can
take different multi-sample data types (i.e., [batch_size, 10, 4]) and provide predicted outputs. This allows datasets
that have been assembled in real-time (historical time series) to be processed at the same time. The program is
designed to be extensible with support for several model types (e.g., GRUs, 1D CNN, or Transformers) as it
requires the ONNX runtime layer. Besides that, the developed program has an agnostic architecture that provides
the ability to deploy the model to different training layers (or frameworks) such as TensorFlow, Keras, and Scikit-
Learn through an ONNX conversion, which is not tied to any local Python dependencies. The DJL runtime is
optimized for inference on CPU or GPU, suitable for any desktop or server use case. Its use of modular pieces
allows the use of pre-trained models and adjusts input or models easily without impacting the training process
significantly.

3.4 DJL integration and translator implementation with batch inference support

Figure 6 illustrates the workflow of the developed LSTM system for automated decision-making, in this case
weather prediction capabilities. The Deep Java Library (DJL) acts as the runtime engine that allows the user to
import and run LSTM models in ONNX format. When developing with a DJL, the user begins with a Criteria
object, which defines the model type, the assumptions for input/output, the target engine (OnnxRuntime) and a
path to the ONNX model. A custom Translator class is required to take raw Java inputs to NDArray tensors and
reconstitute them back to Java primitives to manipulate the outputs. Specifically, the input Translator translates a
3D float array with shape [1,10,4] into an NDList which is the input type needed by the method to make inference,
while the output Translator takes the NDArray tokens and interpret rainfall predictions. In addition, DJL supports
a modular approach for model development, allowing the user to swap out models and use the same input
processing code. The DJL can manage memory use and ensure thread safe operations for several instances of the
same model, with RainfallBatchTranslator used for batch predictions. DJL builds flexibility into the model
development process with the ability to be cross-compatible, with respect to CPU and GPU, as well as providing
input validation and diagnostic for reliable deployment.
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Figure 6. Prediction workflow of the intended deep learning mechanism for aggregating rainfall precipitation
from feed data
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3.5 Model Integration and Functional Validation

This study performed limited functional testing to confirm that the deployed model works properly within the
nested system. The functional testing confirmed that the data ingestion, model inference, and output features
worked as intended, in the real world. A LSTM-based prediction model for rainfall prediction was used as the
basis for the model that made use of multivariate weather data (temperature, humidity, pressure, and wind speed).
The model was developed in PyTorch and exported into ONNX format, which was executed in the Offsetting
Risk Java application using DJL, which triggers the ONNX-Runtime backend. The inference was tested in both
single-instance format and batch-mode format, and the Translator and RainfallBatchTranslator code was stable,
and produced an output prediction for each input instance with an average latency of well under 250 milliseconds
per sample while running on a standard CPU, meeting real-time requirements for predictive analytics. The
predictive values of the LSTM model have a weak correlation to realistic rain, as the dataset underfitted the model
parameters. Even so, the framework allows for testing of different models and parameters which could improve
predictive performance in the long run. The frameworks are also compatible with ONNX models, enabling a
multitude of abilities for time series forecasting.

4.0 RESULTS AND DISCUSSIONS

This section evaluates the system-related aspects of a forecasting toolkit, including model integration,
inference capabilities, interface needs, and scalability. Unlike typical studies concentrating on predictive accuracy,
this proposed a study that explores real-world application and the implementation of modular design for LSTM
modelling in Java. For testing, the study analyses Malaysia's daily rainfall data from 2001 to 2021, including
weather features and utilizes a synthetic ONNX model for validation.

4.1 System integration and inference execution

The LSTM-based rainfall forecasting model was exported in PyTorch using the open neural network exchange
(ONNX) format so that it could then be loaded and executed inside the Java runtime using Deep Java Library
(DJL) with the ONNX Runtime backend. The end-to-end pipeline for the rainfall forecasting from ingesting data,
executing the model, and displaying the result is working reliably with no runtime exceptions or type mismatches,
indicating that the model integration layer was working as expected. Inference was validated with both a single
instance as well as a batch-mode input. With the batch testing, the system was able to efficiently complete
processing of 100 samples with 10-time steps for 4 input features, with total inference processing time under 1
second when running on a standard 16-core CPU (i7-13700HX, 24 thread). These results show that the toolkit can
facilitate low-latency inference in real-time or near-real-time use cases. Figure 7 and 8 both illustrates the
prototype LSTM-based application developed in this study with each constituting supporting features, and the
output generated from the tested Malaysia’s rainfall precipitation data instance (actual versus predicted rainfall).
One thing to note in retrospect of this study is that the premise of analysing inferencing dataset is not limited to
weather prediction purposes; however, it is open to other LSTM-based dataset nomenclature as well, mentioned
in Section 3.1.
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Figure 7. Interface snippet of the Java program integrated with Python mechanics for predicting rain
precipitation volumes within the span of assigned timeframe
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Actual vs Predicted Rainfall

Rainfall {mm)

Index
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Figure 8. Output of the predicted raindrop capacity across the stipulated timespan for Malaysia region (2001 -
2021)

4.2 Interface responsiveness and user interaction

The proposed toolkit emphasizes usability and interactive responsiveness; thus, it has the potential for non-
technical users who do not have proficiency in programming or in deep learning. The user interface utilizes
JavaFX, and thus the experience is for a modern desktop application. Users can load tabular weather data in CSV
format through a simple file selection user interface and subsequently, the system implements structural validation
and ensures necessary fields exist and that data can be in permitted formats. Users can simply initiate an inference
for single predictions or in batch inference, which is entirely abstract behind a single click method of operation.
Visual outputs include various types of outputs visualized as line and area charts that are rendered and updated
dynamically using the JavaFX charting components, which provide near to instantaneous feedback on model
predictions. Users are also able to include uncertainty through the option of confidence intervals for better
interpretable and analytical value. The system provides multiple export options in formats like CSV, Excel, and
PNG for easy usability into downstream analytical workflows or to decision-makers. The system was tested for
responsiveness, as there was no perceived detrimental degradation of responsiveness which supports the
presumption that the toolkit is suitable for use in operational environments daily.

4.3 Modularity and extensibility

The developed experimental toolkit is established with modularity as a first-order principle enabling
extensibility and long-term maintainability without major engineering effort. The fundamental modular
abstraction is founded on decoupling model logic from the interface and data preprocessing layers through a
Criteria object and user-defined Translator classes. The versatility of the toolkit is best exemplified by the fact
that the ONNX model can be swapped for a model using a different deep learning architecture (for example, a
Gated Recurrent Unit or a Multilayer Perceptron) with no changes to the other layers of the application. This
demonstrates the fundamental principle that the framework is model agnostic allowing for any ONNX model,
trained in PyTorch, TensorFlow or other compliant frameworks, to be incorporated into the pipeline without
changing any GUI code or preprocessing logic. The toolkit can also run on completely different hardware
configurations and can be used on either CPU or GPU systems and is therefore deployable on both resource-
constrained edge devices and high-performance CPUs. Moreover, the custom RainfallBatchTranslator
implementation allows batched inference operations performed over very large datasets, which again, enhance the
adaptability of the framework. In summary, the modular approach permits the toolkit to potentially evolve with
changing model standards, along with forecasting requirements.
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4.4 Observed limitations and future directions

The model produced relatively acceptable results but was also underfitting due to a limited diversity in the
training dataset. Apart from this, the system was useful in structuring the operational prediction process. This was
demonstrated during a simulated rain forecasting exercise using Malaysia's historical weather data, which linked
machine learning models with domain-specific decision-making tools, so non-technical users could execute
complex forecasting processes through this desktop application. The goal for the future is to improve predictive
accuracy and reliability through the integration of probabilistic results, multi-step predictions and live data streams
from active sensors. The second desirable objective is to deploy in cloud or edge situations which will help achieve
broader scalability. Lastly, the modular architecture allows for direct comparisons and benchmarking in research
or industry by enabling the change out of otherwise unrelated models with minimal effort.

Even so, there were significant challenges during the preprocessing tasks. NaN, or not-a-number values in the
features and target variable displayed otherwise deterministic behaviour, requiring a cleaning pipeline to remove
incomplete records. While this is important from an integrity perspective, it maintained bias and distorted the
shape of the dataset, if the absence of records was related to important predictive features. Standardization
methods, such as z-score scaling, were employed to mitigate the influence of skewed distributions on feature
values. Addressing missing values during the preprocessing phase is essential to minimize redundancy and reduce
the introduction of noise into the dataset. Furthermore, standard scalers require no NaNs and can only be fitted on
the training data alone to avoid leak. Properly handling missing values and the step for normalizing the features
are typically fundamental to providing a stable and accurate rainfall prediction model. Another alternative for
improvement of data inferencing is to universalize the capability of reproducing feed data regardless of domain
typing such as energy load forecasting and traffic flow that contains variance in data availability diaspora.
However, it could be made compatible for further processing with LSTM learning models so that the proposed
system usage could be further diversified according to scalability of the intended purpose. In the research
argument, the variability of functionality across related execution environment regardless of computing resources
and variability in particular related with the light but broad machine learning of the proposed application use are
highlighted. Additionally, another opportunity for further integration is cloud deployment where the generic
functionalities of the application could be augmented with cloud computing to further support the capability of
the developed modular system architecture.

5.0 CONCLUSION

The presented framework has provided a well-articulated, modular, and extensible tool for runtime deployment
of deep learning models in platform-independent desktop applications. Although the experimental validation of
predictable accuracy in the case study for rainfall forecasting is underdeveloped, it is still sufficient as an initial
demonstration of the framework's capabilities. The rationale for rain prediction as a case study is good based on
the publicly available datasets and environmental justification. For it to be more convincing as a demonstration
of the framework's generalizability, it would have been useful to demonstrate it on a second domain such as energy
load forecasting or traffic flow prediction. The graphical user interface (GUI) is intended to be easy-to-use and
accessible to non-programmers, but there is no formal usability testing completed for this study with non-technical
users. It is anticipated to be further helpful to include usability testing, providing better evidence for the
accessibility and user experience with the expansion possibility of the LSTM application to be imposed on other
automation domain as well. Because the framework is designed for scalable deployment, including at the edge
and in the cloud, future work would consider the same landscape in security, efficient streaming of data, and
optimization of resources as well. Overall, this work lays a simple foundation to operationalize deep learning time
series models and points to potential areas of future validation and advancements in various real-world
applications.
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