UNIVERSITI TEKNOLOGI MARA

MICROBIAL TRANSFORMATION OF FUNEBRENE

AMIRAH IZZATI BINTI OTHMAN

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Pharmacy (Hons.)

Faculty of Pharmacy

ACKNOWLEDGEMENT

First of all, an endless thanks to Allah for all His help by giving me strength to complete this piece of work that I have worked for a year. Now, I would like to express my deep gratitude to my beloved supervisor, Assoc. Professor Dr. Sadia Sultan for willing to accept me as her Final Year Project student, also for her countless guidance, encouragement, knowledge, advice, comments, effort and time during this research was conducted. I am very much thankful to postgraduate student, Miss Sharifah Nurfazilah Wan Yusop, RA Hafiz Nauman and Fatimah Bebe Mohamed Hussain for assisting me throughout this year especially in laboratory work.

Above ground, I am indebted to my beloved parents who motivate me and provide financial support to ease my Final Year Project to be done. Not to forget, my dedication goes to my Final Year Project colleagues who are Amira Syakirin and Shuhadah Johari that always help to sustain positive atmosphere during laboratory work. Thanks also to whom involved either directly or indirectly to enlighten this project.

TABLE OF CONTENTS

TITI	LE PAGE	Page
	ROVAL	
	KOVAL KNOWLEDGEMENT	
	ii 	
	SLE OF CONTENTS OF TABLES	iii
	V	
	OF FIGURES	VI
ABS	TRACT	viii
CHA	APTER ONE (INTRODUCTION)	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of study	3
1.4	Objectives	4
1.5	Research Questions	4
1.6	Hypothesis	4
	54	
СНА	APTER TWO (LITERATURE REVIEW)	5
2.1	Essential oils	5
2.2	Isoprenoids	7
2.3	Sesquiterpenes	9
2.4	Biotransformation of sesquiterpenes	12
2.5	Funebrene	15
2.6	Benefits and limitations of biotransformation	17
СНА	PTER THREE (METHODOLOGY)	19
3.1	Materials	19
	3.1.1 Reagents and Chemicals	19
	3.1.2 Fungi	19
	3.1.3 Material compound of interest	20
3.2	Screening Method	20

ABSTRACT

Microbial transformation studies are vital to gain understanding the bioactivities of a new compound. Biotransformation has many advantages because it is easy to conduct, cheaper as well as promoting green chemistry. This study reviews α -funebrene, an interesting compound to undergo biotransformation process. α -funebrene is classified into group of sesquiterpenes which known as a naturally occurring substance. Biotransformation was observed on these two fungi; *Absidia Coerulea* and *Beauveria Bassiana*. The extraction was done after incubation of α -funebrene with the fungi at time course of day 5 and day 10. The extracts were then analysed through High Performance Liquid Chromatography (HPLC) with Diode Array Detector (DAD). Among these two fungi, extractions chromatogram profile of *Absidia Coerulea* shows more promising results compared to *Beauveria Bassiana*.

CHAPTER ONE

INTRODUCTION

1.1 Background of Study

Safety evaluation of a compound is a mandatory before proceed with human use. Safety and efficacy of an active principle should be assessed through bioactivities and metabolic studies. In order to administer foreign compound into human, it needs to metabolise either to be active metabolites or inactive metabolites. This study offers a better understanding of a compound that could involve in biotransformation.

In microbial transformation, fungi are chosen to be its foods. From history, microbial transformation is being proposed in 1974 when scientists found microorganisms able to perform same metabolism reactions in human (Duran & Elena, 2000). Probably this is because fungi and human cells are belonged to eukaryotic cells. Similar behaviour of cell consists of identical enzyme systems which then yield similar metabolites through biotransformation. Therefore, presently,

1