

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 – RESEARCH PROJECT

PREPARATION AND CHARACTERIZATION OF Ag-TiO₂/g-C₃N₄ AND ITS APPLICATION UNDER METHYLENE BLUE AND REACTIVE RED 4 DYE

Name : NUR ARDINI BINTI AHMAD SHAHRUL AMIN

Student ID : 2023387785 Program : AS245 Course code : FSG 671

Mobile Phone

E-mail : 2023387785@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approved this research proposal report to be summited for evaluation. The similarity index is less than 4 %

Supervisor's name : PROFESOR MADYA DR. WAN IZHAN NAWAWI BIN

WAN ISMAIL

Signature

Date : 8th July 2025

PREPARATION AND CHARACTERIZATION OF Ag-TiO₂/g-C₃N₄ AND ITS APPLICATION UNDER VARIOUS DYE

NUR ARDINI BINTI AHMAD SHAHRUL AMIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2025

ABSTRACT

PREPARATION AND CHARACTERIZATION OF Ag-TiO₂/g-C₃N₄ AND ITS APPLICATION UNDER METHYLENE BLUE AND REACTIVE RED 4 DYE

The photodegradation process with a photocatalyst is a novel green technology for responding to the remediation of dye-contaminated wastewater. Conventional photocatalysts like TiO2 are limited by their large band gap and weak responsiveness to visible light, greatly reducing their effectiveness in environmental applications. This study aims to overcome these limitations with the design of a new Ag-TiO₂/g-C₃N₄ photocatalyst combining the merits of graphitic carbon nitride (g-C₃N₄) and silver (Ag) to improve the absorption of visible light, promote charge separation, and increase photocatalytic efficiency by using a Z-scheme heterojunction and the localized surface plasmon resonance (LSPR) effect. The study investigates the synergistic effects of these improvements, compares the photocatalytic degradation of cationic (Methylene Blue) and anionic (Reactive Red 4) dyes, and determines the recyclability and stability of the composite material. Synthesis of the Ag-TiO₂/g-C₃N₄ photocatalyst was performed using chemical reduction accompanied by in-situ calcination procedures, followed by characterization through FTIR, XRD, and UV-Vis DRS. Photodegradation experiments were performed under fluorescent lighting with consideration of dye concentrations and varying pH levels. The results showed significantly enhanced photocatalytic activity, with the photocatalyst exhibiting higher efficiency toward Reactive Red 4, especially under acidic pH, compared to Methylene Blue, which showed moderate degradation under alkaline conditions. Reusability tests indicated that the catalyst maintained its performance over multiple cycles without noticeable decline in activity. In summary, the Ag-TiO₂/g-C₃N₄ photocatalyst effectively overcomes the drawbacks of pure TiO₂ and demonstrates excellent degradation performance, particularly for Reactive Red 4, along with recyclability, making it a highly promising solution for sustainable wastewater remediation in alignment with Sustainable Development Goal #6 (Clean Water and Sanitation).

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xiii
CHAPTER 1: INTRODUCTION	1
1.1 Research background	1
1.2 Problem statement	2
1.3 Research questions	3
1.4 Research objectives	4
1.5 Significance of study	4
1.6 Implication	6
1.7 Scope and limitation	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 Photocatalysis	8
2.1.1 Type of photocatalyst	9
2.1.2 Titanium dioxide (TiO ₂) as photocatalyst	11
2.1.3 Graphitic carbon nitride (g-C ₃ N ₄) as photocatalyst	13
2.1.4 Modification of TiO ₂	14
2.1.5 Preparation of Ag- TiO ₂	17
2.2 Dyes	18
2.2.1 Anionic dyes (Reactive Red 4)	23
2.2.2 Cationic dyes (Methylene Blue)	24
2.3 Photocatalytic degradation of dyes	25

CHAPTER 3: RESEARCH METHODOLOGY	27
3.1 Materials	27
3.1.1 Chemicals and reagents	27
3.1.2 Apparatus and instruments	28
3.2 Methods	28
3.2.1 Preparation of TiO ₂	28
3.2.2 Preparation of g-C ₃ N ₄	28
3.2.3 Preparation of TiO ₂ /g-C ₃ N ₄ using wet in situ calcination method	29
3.2.4 Preparation of Ag-TiO ₂ /g-C ₃ N ₄	29
3.3 Characterizations study	29
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR)	29
3.3.2 X-ray Diffraction Spectroscopy (XRD)	31
3.3.3 UV-Vis Diffuse Reflectance Spectroscopy (UV-vis/DRS)	32
3.4 Photocatalytic degradation of RR4 dye	33
3.4.1 The effect of initial RR4 dye concentration	33
3.4.2 The effect of pH values of the RR4 dye solutions	34
3.5 Photocatalytic degradation of MB dye	34
3.5.1 The effect of initial MB dye concentration	35
3.5.2 The effect of pH values of the MB dye solutions	35
3.6 The stability of photocatalyst systems	35
3.7 Experimental flow chart	37
CHAPTER 4: RESULT AND DISCUSSION	38
4.1 Characterization study	38
4.1.1 XRD analysis	38
4.1.2 FTIR analysis	40
4.1.3 UV-Vis DRS analysis	43
4.2 Photodegradation study of Methylene Blue	45
4.3 Photodegradation study of Reactive Red 4	48
4.4 Point of Zero Charge	51
4.4.1 pHpzc for TiO ₂	51
4.4.2 pHpzc for g-C ₃ N ₄	52
4.4.3 pHpzc for $TiO_2/g-C_3N_4$	53