

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

IN-SITU PREPARATION AND CHARACTERISATION OF Pt-Bi₂WO₆/g-C₃N₄ AND PHOTODEGRADATION STUDY ON METHYLENE BLUE

Name : NISA FATINI BINTI BASRI

Student ID : 2023149629
Program : RAS245
Course code : FSG671

Mobile Phone : 0194078198

E-mail : 2023149629@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : PROFESOR MADYA DR. WAN IZHAN NAWAWI BIN

WAN ISMAIL

Date : 27th JULY 2025

Turnitin Similarity % : 8%

Signature

ASSOC, PROF. DR. WAN IZHAN NAWAWI BIN WAN ISMAIL

Faculty of Applied Sciences

Universiti Teknologi MARA Cawangan Perlis

^{*} Please attach the Turnitin summary report, with your name clearly stated, at the end of your report and submit it together.

IN-SITU PREPARATION AND CHARACTERISATION OF Pt-Bi $_2$ WO $_6$ /g-C $_3$ N $_4$ AND PHOTODEGRADATION STUDY ON METHYLENE BLUE

NISA FATINI BINTI BASRI

BACHELOR OF SCIENCE (Hons.) APPLIEDCHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2025

ABSTRACT

IN-SITU PREPARATION AND CHARACTERISATION OF Pt-Bi₂WO₆/g-C₃N₄ AND PHOTODEGRADATION STUDY ON METHYLENE BLUE

This research focuses on synthesizing Pt-Bi₂WO₆/g-C₃N₄ (PBCN) to propose a Zscheme mechanism for enhance degradation efficiency. Platinum (Pt) was incorporated as an electron mediator between bismuth tungstate (BWO) and graphitic carbon nitride (g-CN). Characterization techniques including XRD, FTIR, UV-Vis DRS, and FESEM-EDX to confirm the structural, morphological, and optical properties of the synthesized material. XRD analysis verified the improved crystallinity of the PBCN (14.4058nm), with no impurity peaks observed. FTIR spectra of PBCN confirmed the presence of functional groups from both parents material, indicating successful heterojunction formation. FESEM-EDX revealed a stacked plate-like morphology with uniform distribution of Pt, Bi, W, C, N, and O elements, supporting the successful integration of Pt and good interfacial contact between the components. UV-Vis DRS analysis showed enhanced visible light absorption and a band gap of 2.77 eV for PBCN, suitable for visible-light-driven photocatalysis. Photocatalytic experiments were conducted under visible light irradiation using methylene blue (MB) and methyl orange (MO) as model pollutants representing cationic and anionic dyes respectively. The results revealed that PBCN exhibited significantly higher degradation efficiency for MB (88.84%) than MO (12.1%), primarily due to favourable electrostatic interactions and molecule structure of the dyes themselves. Recyclability tests demonstrated the catalyst's stability and sustainability over five degradation cycles. Overall, this study presents PBCN as a promising and reusable photocatalyst with possible Z-scheme mechanism, applicable for future study in wastewater treatment.

TABLE OF CONTENTS

ABST	RACT	i			
ABST	RAK	ii			
ACKNOWLEDGEMENT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS		iii vii viii x			
			LIST	OF ABBREVATIONS	xii
			СНАР	PTER 1 INTRODUCTION	13
			1.1	Background of Study	13
1.2	Problem Statement	16			
1.3	Research Question	17			
1.4	Objectives of Study	17			
1.5	Significance of Study	18			
1.6	Scope and limitations	19			
СНАР	PTER 2 LITERATURE REVIEW	21			
2.1 Photocatalysis		22			
2.2 Photocatalyst		24			
2.3 Bismuth Tungstate (Bi ₂ WO ₆) Photocatalyst		27			
2.4 Graphitic carbon Nitride (g-C ₃ N ₄) as Photocatalyst		30			
2.5 Role of Platinum (Pt) in Photocatalyst Modification		32			
2.6 Dyes		34			
2.0	6.1 Anionic dye	37			
2.0	6.2 Cationic dye	38			
2.7 I	Photocatalytic degradation of dyes	39			
СНАР	PTER 3 RESEARCH METHODOLOGY	43			

3.1 Materials and Chemicals	43
3.2 Equipment and instrument	43
3.3 Preparation of suspended Pt-Bi ₂ WO ₆ /g-C ₃ N ₄	43
3.3.1 Synthesisation of g-C ₃ N ₄	43
3.3.2 Preparation of Bi ₂ WO ₆	44
3.3.3 Preparation of Pt-Bi ₂ WO ₆	44
3.3.4 Preparation of Pt-Bi ₂ WO ₆ / g-C ₃ N ₄	45
3.4 Characterization Study	45
3.4.1 Fourier-Transform Infrared Spectroscopy (FTIR)	45
3.4.2 Field Emission Scanning Electron Microscope (FESEM)	46
3.4.3 UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis/DRS)	47
3.4.4 X-ray Diffraction Spectroscopy (XRD)	47
3.5 Experimental Setup for Photocatalytic Degradation	49
3.5.1 Preparation of Dye Solutions	49
3.5.2 Preparation for photocatalytic Tests	49
3.6 Analytical Method	50
3.6.1 Photocatalytic test evaluation	50
3.7 Control Study	50
3.8 Recyclability Test of the Photocatalyst	51
3.9 Experimental Design	52
CHAPTER 4 RESULTS AND DISCUSSIONS	53
4.1 Characterization Study	53
4.1.1 X-Ray Diffraction Analysis	53
4.1.2 Fourier Transformed Infrared Spectroscopy (FTIR)	56
4.1.3 Field Emission Scanning Electron Microscope (FESEM)	58
4.1.4 Ultraviolet visible diffuse reflectance Spectroscopy	59
4.2 Photocatalytic Performance	62
4.2.1 Control Study	62
4.2.2 Comparative Study	63
4.2.3 Comparison on Dye	65
4.2.4 Point of zero charge (PZC)	67
4.2.5 Recyclability	70