

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

ADSORPTIVE REMOVAL OF METHYLENE BLUE USING ACTIVATED CARBON DERIVED FROM BANANA STEM

Name : ADAM NABIL BIN AZNAN

Student ID : 2023105167

Program : RAS245

Course code : FSG671

Mobile Phone : 018-9024546

E-mail : 2023105167@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : DR ZAIDI BIN AB GHANI

Date : 1/8/2025

Turnitin Similarity % : 24%

Signature

ADSORPTIVE REMOVAL OF METHYLENE BLUE USING ACTIVATED CARBON DERIVED FROM BANANA STEM

ADAM NABIL BIN AZNAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2025

TABLE OF CONTENTS

		Page	
AC	KNOWLEDGEMENTS	i	
	TABLE OF CONTENTS		
	LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS ABSTRACT		
AB			
ABSTRAK		xii	
EX	EXECUTIVE SUMMARY		
	CHAPTER 1 INTRODUCTION		
1.1	Research Background	1	
1.2	Problem Statement	3	
1.3	Research Questions	5	
1.4	Objectives	5	
1.5	Scope and Limitation of Study	ϵ	
1.6	Significance of study	7	
1.7	Expected Output/ Outcomes/ Implication	8	
	CHAPTER 2 LITERATURE REVIEW		
2.1	Methylene Blue (MB) as a Source of Water Pollution	10	
	2.1.1 Chemical structure and molecular charateristic of MB	10	
	2.1.2 Industrial applications and sources of methylene blue (MB) in	11	
	wastewater		
	2.1.3 Environmental and health hazards associated with methylene	12	
	blue (MB)		
2.2	Adsorption Treatment of Methylene Blue (MB)	13	
	2.2.1 Principles and mechanisms of adsorption	13	

	2.2.2 Characteristic of activated carbon	15
	2.2.3 Method of activated carbon (banana stem) preparation	17
	2.2.4 Agricultural waste utilization in preparation of activated carbon	19
	(banana stem)	
	2.2.5 Activated carbon as and Adsorbent for Methylene Blue Removal	21
2.3	Parameters Affecting Adsorption	22
	2.3.1 Effect of Adsorbent Dosage	22
	2.3.2 Effect of initial MB concentration	23
	2.3.3 Effect of pH	24
	2.3.4 Effect of temperature	26
2.4	Adsorption Isotherm Models	27
	2.4.1 Langmuir Isotherm Models	27
	2.4.2 Freundlich Isotherm Models	29
	2.4.3 Temkin Isotherm Models	31
2.5	Adsorption Kinetics Models	33
	2.5.1 Pseudo-first order (PFO)	33
	2.5.2 Pseudo-second order (PSO)	35
	2.5.3 Intraparticle Diffusion	36
2.6	Adsorption Thermodynamics	37
	CHAPTER 3 METHODOLOGY	
3.1	Materials and chemicals	38
3.2	Preparation of MB Solution	38
3.3	Preparation of AC	39
3.4	Batch Adsorption	39
	3.4.1 Effect of Adsorbent Dosage	39
	3.4.2 Effect of Initial Dye Concentration	40
	3.4.3 Effect of Contact Time	40
	3.4.4 Effect of pH	40
	3.4.5 Effect of Temperature	40

ABSTRACT

In this study, zinc chloride (ZnCl₂) was used as the activating agent for producing activated carbon derived from banana stems. The activated carbon was then applied to extract methylene blue (MB) dye from aqueous solutions. The adsorption process was investigated using isotherm models Langmuir, Freundlich, and Temkin. Among these, the Langmuir model provided the best fit, with a maximum monolayer adsorption capacity (q_m) of 180 mg/g and a correlation coefficient (R²) of 0.9996, indicating monolayer adsorption on a homogeneous surface. To better understand the adsorption mechanism and rate-controlling steps, kinetic studies were conducted using pseudo-first-order (PFO), pseudo-second-order (PSO), and intraparticle diffusion (IPD) models. The PSO model showed the best correlation with experimental data, with R2 values ranging from 0.9964 to 0.9995, and predicted adsorption capacities (q_e) closely matching the experimental values. IPD analysis indicated a multi-step adsorption process with R² values between 0.7647 and 0.8049, and increasing boundary layer thickness as concentration increased. Thermodynamic analysis revealed that the adsorption process was endothermic, with an enthalpy change (ΔH°) of 102.71 kJ/mol, and accompanied by an entropy change (ΔS°) of 358.24 J/mol·K, indicating increased randomness at the solidliquid interface. The Gibbs free energy change (ΔG°) ranged from -4.04 to -6.91 kJ/mol, confirming that the adsorption of methylene blue onto banana stem derived activated carbon is spontaneous and thermodynamically favorable. These findings highlight the material's efficiency, cost-effectiveness, and environmental sustainability for dye removal in wastewater treatment applications.