

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

EFFECT OF PROXIMATE ANALYSIS ON THE STORAGE STABILITY AND COMBUSTION PERFORMANCE OF EFB-HDPE PYROLYZED CHAR PELLETS

Name : NUR HIDAYATUL FITRAH BINTI SOBRI

Student ID : 2023105413

Program : AS245 Course code : FSG671

Mobile Phone : 019-9278029

E-mail : 2023105413@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : ASNIDA YANTI BINTI ANI

Date : 27/7/2025

Turnitin Similarity % : 10%

Signature :

EFFECT OF PROXIMATE ANALYSIS ON THE STORAGE STABILITY AND COMBUSTION PERFORMANCE ON EFB-HDPE PYROLYZED CHAR PELLETS

NUR HIDAYATUL FITRAH BINTI SOBRI

Final Year Project Report Submitted in
Partial Fulfilment of the Requirements for the
Degree of Bachelor of Science (Hons.) Applied Chemistry
in the Faculty of Applied Sciences
Universiti Teknologi MARA

AUGUST 2025

ABSTRACT

EFFECT OF PROXIMATE ANALYSIS ON THE STORAGE STABILITY AND COMBUSTION PERFORMANCE ON EFB-HDPE PYROLYZED CHAR PELLETS

The increasing amount of agricultural and plastic waste is a major environmental issue that leads to land pollution and underutilized resources. This research evaluates the combustion performance of Empty Fruit Bunch (EFB) and High-Density Polyethylene (HDPE) pyrolyzed char. The study specifically assessed the modification of EFB-HDPE ratios, storage conditions, which is ambient and vacuum, and storage time on moisture content, calorific value, and the stability of the pellets. It was found that higher amounts of HDPE reduced moisture content from 4.51% at 100% EFB to 0.89% at 25% EFB and fixed carbon but increased in volatile matter and calorific value up to 98.09% and 4409 Kcal/kg, respectively. Pellets stored under vacuum showed lower moisture absorption than those stored in ambient conditions. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed higher peak intensity of O-H functional groups in pure EFB which means those samples had higher moisture affinity. Overall, the data suggests that char pellets derived from EFB and HDPE could sustain high energy potential while maintaining structural rigidity and durability, possibly serving as an efficient renewable energy source.

TABLE OF CONTENTS

ABSTRACT	
ABSTRAK	
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF SYMBOLS	vi
LIST OF ABBREVIATIONS	vii
CHAPTER 1: INTRODUCTION	1
1.1 Background of study	1
1.2 Problem statement	3
1.3 Research questions	4
1.4 Objectives	4
1.5 Significance of study	5
1.6 Expected output/ outcomes/ implication	6
CHAPTER 2: LITERATURE REVIEW	8
2.1 Biomass	8
2.2 Plastic	9
2.3 Char pellets from co-pyrolysis	10
2.4 Advantages and disadvantages of EFB-HDPE char pellets	11
2.5 Proximate analysis	12
2.6 Calorific value	15
2.7 Storage stability	15
_CHAPTER 3: RESEARCH METHODOLOGY	17
3.1 Raw material, apparatus, and instruments	17
3.2 Sample preparation	17
3.3 Co-pyrolysis	17
3.4 Pellet preparation	18
3.5 Physiochemical characterization	18
3.5.1 Moisture content	19

3.5.2 Volatile matter	19
3.5.3 Ash content	19
3.5.4 Fixed carbon	20
3.5.5 Calorific value	20
3.5.6 Storage conditions and time	20
3.5.7 FTIR analysis	21
3.6 Flowchart	22
CHAPTER 4: RESULTS AND DISCUSSION	23
4.0 Introduction	23
4.1 Co-pyrolysis of Empty Fruit Bunch and High-Density Polyethylene	23
4.2 Physiochemical characterization	24
4.2.1 Proximate analysis	24
4.2.2 Calorific value	27
4.2.3 Pelletization	28
4.2.4 Effect of storage conditions and time on moisture content	28
4.2.5 Comparison of moisture content between solid char and pellet	33
4.2.6 FTIR analysis	35
CHAPTER 5: CONCLUSION AND RECOMMENDATION	37
5.1 Conclusion	37
5.2 Recommendation	38
GANTT CHART	39
REFERENCES	40
CURRICULUM VITAE	44