

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

ASSESSING THE ANTI-INFLAMMATORY POTENTIAL OF Kyllinga nemoralis EXTRACT AND DEVELOPMENT OF HYDROGEL DERMAL PATCH

Name : Nuha Afiqah Binti Fisol

Student ID : 2023393347

Program : AS245 Course code : FSG671

Mobile Phone

E-mail : nuhafisol@gmail.com

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : Noor Hafizah Binti Uyup

Date : 01/08/2025

Turnitin Similarity % : 17%

Signature :

ASSESSING THE ANTI-INFLAMMATORY POTENTIAL OF Kyllinga nemoralis EXTRACT AND DEVELOPMENT OF HYDROGEL DERMAL PATCH

NUHA AFIQAH FISOL

BACHELOR OF SCIENCE (Hons.)
APPLIED CHEMISTRY
FACULTY OF APPLIED SCIENCES
UNIVERSITY TEKNOLOGI MARA

JULY 2025

ABSTRACT

ASSESSING THE ANTI-INFLAMMATORY POTENTIAL OF Kyllinga nemoralis EXTRACT AND DEVELOPMENT OF HYDROGEL DERMAL PATCH

Skin inflammation is a common condition that affects individuals across all age groups, often leading to discomfort and a diminished quality of life. There remains a pressing need for alternative treatments that are both effective and associated with fewer side effects. In this research, the development of topical non-steroidal antiinflammatory drugs (NSAIDs) derived from natural products offers a promising avenue, particularly for resource-limited settings such as Malaysia. This study investigates the anti-inflammatory potential of Kyllinga nemoralis extract and its incorporation into a hydrogel-based dermal patch. Anti-inflammatory activity was evaluated using a heat-induced egg albumin denaturation assay. The extract exhibited 19.76% inhibition at a concentration of 31.25 µg/mL, with an IC₅₀ value of 194.63 µg/mL. While showing moderate efficacy compared to diclofenac, the extract demonstrated a saturation-like response at higher concentrations. GC-MS phytochemical profiling confirmed the presence of bioactive derivatives, including terpenoids, phenylpropanoids, and flavonoids. The extract was successfully formulated into a pectin-based hydrogel dermal patch. Among the tested formulations, FPC2 (1% extract) exhibited a smoother texture and demonstrated a higher release rate, reaching a concentration of 12 µg/mL at physiological pH. These findings indicate that Kyllinga nemoralis extract has significant potential as a natural topical NSAID for managing skin inflammation.

TABLE OF CONTENTS

		Page
ABS	STRACT	iii
ABS	TRAK	iv
ACK	KNOWLEDGEMENT	V
TAB	BLE OF CONTENTS	vi
	Γ OF TABLES	Viii
	Γ OF FIGURES	ix
	Γ OF SYMBOLS	X
LIST	Γ OF ABBREVIATIONS	xi
CHA	APTER 1 INTRODUCTION	
1.1	Background of Study	1
1.2	Problem statement	5
1.3	Objectives of Study	6
1.4	Significance of study	6
CHA	APTER 2 LITERATURE REVIEW	
2.1	Background of Kyllinga nemoralis	9
2.2	Phytochemicals profile of Kyllinga nemoralis	10
	2.2.1 Flavonoids	11
	2.2.2 Alkaloids	13
	2.2.3 Terpenoids	15
2.3	7 0	18
2.4	Anti-inflammatory activity	23
CHA	APTER 3 RESEARCH METHODOLOGY	
3.1	Materials and chemicals	25
	3.1.1 Plant	25
	3.1.2 Materials	25
	3.1.3 Chemicals	25
3.2	Equipment and instrument	26
	3.2.1 Equipment	26
	3.2.2 Instrument	26
3.3	Preparation of Kyllinga nemoralis extract	26
	3.3.1 Preparation of plant sample	26
2.4	3.3.2 Extraction of plant sample	27
3.4	Characterization of <i>Kyllinga nemoralis</i> extract	27
	3.4.1 Gas Chromatography – Mass Spectrometry (GC-MS)	27
	analysis 2.4.2. Identification of phytochemicals present	
	3.4.2 Identification of phytochemicals present 3.4.3 Albumin denaturation assay	28 28
	J.T.J MIUHIHI UMIAWIAHUH AMAY	∠ \

3.5	Formulation of hydrogel dermal patch	30	
3.6	Evaluation on physicochemical properties of the hydrogel	31	
	3.6.1 Organoleptic test	31	
	3.6.2 In vitro release test	31	
3.7	Experimental designs	33	
CHA	APTER 4 RESULTS AND DISCUSSION		
4.1	Extraction yield of Kyllinga nemoralis	34	
4.2	Identification of phytochemicals in Kyllinga nemoralis extract		
	through GC-MS analysis	37	
4.3	Inhibition of egg albumin denaturation	40	
4.4	Assessment of the developed pectin-based hydrogel dermal patch	44	
	4.4.1 Organoleptic properties	45	
	4.4.2 In vitro release pattern	49	
CHA	APTER 5 CONCLUSION AND RECOMMENDATION		
5.1	Conclusion	52	
5.2	Recommendations	53	
REF	ERENCES	55	
APP	APPENDICES		
CUR	CURRICULUM VITAE		
		68	