FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA PULAU PINANG

FINAL DRAFT:

SMART FAN

MUHAMMAD BIN ZAKARIA

MUHAMMAD SUFIAN BIN IDRIS

SUPERVISOR:

EN.MOHAIYEDIN B IDRIS

ABSTRACT

This project is known as a smart fan, it use the PIRsensor to detect motion and LM35DZ to detect heat and finally operate the fan. So, this project have the relationship with the temperature that act as a variable. Room temperature is a common term that can either denote a certain temperature to which humans are accustomed or a specific temperature and passive infra-red sensor is a pyroelectric devices motion by measuring changes in the infrared levels emitted by surrounding objects. This motion can detect by checking for a high signal on a single input output pin. Usually used as a security device in a monitored area to detect appearance of human. Our project have an objective to achieve that is to design automatic fan operating system based on indoor air temperature and human detection sensor. Then the next objective is to design a profitable project for the comfortable condition in home. This objective must be achieve to get a complete project. To support our project, we use UV Exposure Machine, The Etching Machine, Drilling Process Machine, and Printed Negative Plastic. This equipment has been used for process in Printed Circuit Board (PCB). There are many software to design the Printed Circuit Board (PCB) for example OrCAD, TINA software, PROTEUS and PCB designer. The layout is drawn by using PROTEUS software. The artwork that is designed in PROTEUS then is transferred to the negative film. It is printed using a laser printer. Then, the negative plastic film is exposed in the UV Exposure. This is where the PCB design is transferred to the PCB Board. The board is then go through the etching process. Next the board will go through a drying and drilling process. The board is drilled to make appropriate holes for the leg of components. A high speed drill press is essential for carbide drills. The last step of making PCB layout is the soldering. The leg of component then is placed at the hole that is drill before and soldering it by tin. Next equipment is a solder, adapter, multimeter, and Breadboard. For test the hardware circuit at breadboard, we use adapter and multimeter. Adapter is used for give voltage supply in a direct current (DC) and multimeter for troubleshoot this circuit before and after voltage supply are supplied. Solder is an equipment for soldering the components at Printed Circuit Board (PCB).

ACKNOWLEDGEMENTS

First of all, we would like to say Alhamdulillah, after one semester of hard work and commitment, we are able to finish the task given by our lecturer for subject EEE 358 and course. Our project title, 'Smart Fan' is the result for our final year project.

Special thanks to our lecturers, Encik Mohaiyedin Idris(EEE 358) and (EEE 368) for the guides and advices that been put through our team since the beginning of our project. We had some difficulties in doing this task, but they taught us patiently until we knew what to do. Without their help, we might not be able to do the hardware of the project.

Thanks to our parents and families for supporting us. Without their financial and moral support, we might not be able to start the task well. Also, thanks to our entire group members which have contribute an enormous amount of efforts and time in finishing the task. Last but not least, thanks to our friends for the help and ideas we shared together in completing this task. They were helpful when we worked and discussed together, until this task done.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS2
ABSTRACT3
LIST OF FIGURES4
LIST OF TABLES5
LIST OF ABBREVIATION7
CHAPTER 1 INTRODUCTION
1.1 Background of Study
CHAPTER 2 MATERIALS AND METHOD
2.1 Methodology
CHAPTER 3 CIRCUIT DESIGN AND OPERATIONS
3.1 Schematic Diagram
CHAPTER 4 RESULT AND DISCUSSION
4.1 Software Simulation Result
CHAPTER 5 CONCLUSION AND RECOMMENDATION
5.1 Conclusion
REFERENCES

LIST OF FIGURES

Figure 1: Flow Chart of The Project	10
Figure 2: Ohm meter	12
Figure 3: Cutter	13
Figure 4: Soldering equipment	13
Figure 5: Test pen	14
Figure 6: IC LM358	16
Figure 7:IC LM358	16
Figure 8:Resistor	17
Figure 9:LED	18
Figure 10:Transistor BC547	18
Figure 11:LM 35DZ	19
Figure 12:Diode	20
Figure 13:PIR	21
Figure 14:Product Dimension	21
Figure 15:Product Layout	22
Figure 16:USB Fan	23
Figure 17:Heat Sensor Circuit	24
Figure 18:Block Diagram for Smart Fan	26
Figure 19:Process of making PCB.	27
Figure 20:Printed Circuit Board Fabrication Process Flow	28
Figure 21:Photoplotter Machine	29
Figure 22-PCR Shear Cutter	30