FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA PULAU PINANG

FINAL REPORT: AUTOMATIC SLIDING DOOR AND CLAP SWITCH FOR ELECTRICAL APPLIANCES

THOLHAH BIN OTHMAN

MUHAMAD HAZIM BIN MOHD IDRIS

SUPERVISOR: CIK NURLIDA ISMAIL

ABSTRACT

It is important to understand that there are many different types and severities of impairment which can lead to disabilities. Some types of impairment are visual impairment, hearing impairment, movement and others. Back in the day, disable people are usually becomes a burden to their family. Nowadays, many facilities and research were created to make their life easier. This project is to study about the physical impairment and help them by building automatic door. By building this project, they can easily access in and out without using any effort. In other hand, the source of electricity today is getting decrease annually. People excessively use the electrical energy without hesitation. While the cost of electricity bill getting higher each month. Many campaign that invite us to use energy efficiently and conserve energy. Still, we cannot apply this habit in our daily routine. This is why the second project which is clap switch has been made. By doing some research, people often forgot to switch off the light whenever they went out from a toilet or bedroom. Thus, it generates the waste of the electricity. So, the clap switch project can help to resolve the problem. By adding this two project, a smart house concept is born.

ACKNOWLEDGEMENT

We would like to express our deepest appreciation to all those who provided us the possibility to complete this report. A special gratitude I give to our final year project supervisor, Cik Nurlida Ismail, whose contribution in stimulating suggestions and encouragement, helped us to coordinate our project especially in building the hardware.

Furthermore I would also like to acknowledge with much appreciation to the crucial role of the panels, Encik Badrul Hisham Mat Tahir and Cik Shahidah Sadimin, who gave the helps in improvising the project and report of Automatic Sliding Door and Clap Switch for Electrical Appliances. A special thanks goes to PCB Laboratory Assistant, Encik Nadhar Omar, who consult us to build the circuit board and gave permission on using the equipment in laboratory. I have to appreciate the guidance given by other supervisor as well as the panels especially in our project presentation that has improved our presentation skills thanks to their comment and advices.

Nevertheless, we express our gratitude toward our families and friends for their kind cooperation and encouragement which help us in completion of this project

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
LIST OF FIGURES	iv
LIST OF TABLES	vi
LIST OF ABBREVIATIONS	vii
CHAPTER 1 INTRODUCTION	
1.1 Background Of Study	1
1.2 Problem Statemen	2
1.3 Objectives Of Research	3
1.4 Scope Of Study	3
CHAPTER 2 MATERIALS AND METHODS	
2.1 Methodology	
2.1.1 Design Flow Chart	
2.2 Experimental Result	9
2.3 Algorithm	11
2.4 Equipment and Component	12
CHAPTER 3 CIRCUIT DESIGN AND OPERATIONS	
3.1 Schematic Diagram	18
3.2 PCB Layout	21
3.3 PCB Making	22
CHAPTER 4 RESULT AND DISCUSSION	
4.1 Software Simulation Result	30
4.2 Hardware Implementation Result	37
4.4 Result and Discussions	41
CHAPTER 5 CONCLUSION AND RECOMMENDATION	
5.1 Conclusion	43
5.2 Recommendation	45
REFERENCES	46
APPENDICES	47

LIST OF FIGURES

Figure 2.1: System operation of Automatic Sliding Door	5
Figure 2.2: System operation of Clap Switch for Electrical appliances	7
Figure 2.3: Circuit of Clap Switch before Simulation Run	9
Figure 2.4: Circuit of Automatic Door before Simulation Run	9
Figure 2.5: Circuit of Clap Switch before Simulation Run	10
Figure 2.6: Circuit of Automatic Door before Simulation Run	10
Figure 3.1: The Schematic Diagram for Clap switch	12
Figure 3.2(a): Microphone picks up clap sound	13
Figure 3.2(b): IC NE555 operate Clap Switch Circuit	13
Figure 3.3: The Schematic Diagram for Automatic Door	14
Figure 3.4 (a): The PCB layout for Clap Switch	15
Figure 3.4 (b): The PCB layout for Automatic Door	15
Figure 3.5: Flowchart Process of PCB making	16
Figure 3.6: Brushing off dirt on copper board	17
Figure 3.7: PCB Laminating Process	18
Figure 3.8: UV Exposure Process	18
Figure 3.9: PCB Rota-Spray Developer	19
Figure 3.10: PCB Etching Process	19
Figure 3.11: Photoresist Stripper Process	20
Figure 3.12: Acid Cleaner Process	20
Figure 3.13: Micro Etch Process	21
Figure 3.14: Drying the Completed Circuit Board	21
Figure 3.15: PCB layout complete	22
Figure 3.16: drilling process	22
Figure 3.17: soldering the components	23