UNIVERSITI TEKNOLOGI MARA

FREE RADICAL AND NITRIC OXIDE INHIBITION OF TRIGONA HONEY

NURUL NABILAH HUSNA BINTI ZUNAIDI

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Pharmacy (Hons.)

Faculty of Pharmacy

ACKNOWLEDGEMENT

In the name of Allah, the most gracious and merciful, I am really glad with the strength and patience given by Him to complete my thesis for final year project as a student in Bachelor of Pharmacy (Hons.) at Universiti Teknologi MARA (UiTM).

I would like to express my sincere gratitude to my supervisor, Dr Salfarina Binti Ramli for her kindness and endless support throughout my study. Thank you to all lecturers and staff of Faculty of Pharmacy who involved either directly or indirectly in finishing my final year project.

I also thank to my family members especially Mr. Zunaidi Yusoff and Mrs. Asmalailey Mohamad for their endless support and advices. Special gratitude to my lab mates, Anis Nadhira and Nurul Tartila for their help and sharing information throughout this study. Last but not least, I would like to thank my colleagues, Nur Faezah, Nazidah, Atikah and others whom always giving me advice, support and help in completing this project.

Thank you.

Table of Contents

APPR	OVAL SHEET				
ACKNOWLEDGEMENTii					
LIST (LIST OF FIGURESv				
LIST (OF TABLE	vi			
ABST	RACT	.vii			
CHAP	TER 1	1			
INTRO	DDUCTION	1			
1.1	BACKGROUND OF STUDY	1			
1.2	PROBLEM STATEMENT	3			
1.3	SIGNIFICANCE OF STUDY	3			
1.4	RESEARCH HYPOTHESIS	3			
1.5	SCOPE AND LIMITATIONS	4			
CHAP	TER 2	5			
LITER	ATURE REVIEW	5			
2.1	HONEY	5			
2.2	TYPES OF HONEY	6			
2.3	STINGLESS BEE	8			
2.4	TRIGONA HONEY	9			
2.5	COMPOSITION OF HONEY	.10			
2.6	ANTIOXIDANT PROPERTIES OF HONEY	.12			
2.7	NITRIC OXIDE	.13			
CHAPTER 3					
METHODOLOGY1					
3.1	MATERIAL AND CHEMICALS	16			

ABSTRACT

In this study, trigona honey sample was tested to evaluate the free radical scavenging activity and the nitric oxide inhibition activity. The activity was compared with α-tocopherol. The α-tocopherol is a well-known antioxidant substance. The IC50 for DPPH free radical scavenging activity and nitric oxide inhibition activity for trigona honey were not determined. The IC50 for DPPH free radical scavenging activity and the nitric oxide inhibition activity for α-tocopherol were 47.45 μg mL⁻¹ and 78.74 μg mL⁻¹ respectively. These results indicate that Trigona honey does not exhibit potent free radical scavenging and nitric oxide inhibition activity in contrast to α-tocopherol.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Honey is a natural sweet substance that is manufactured by honey bees from the nectar of the plant or the excretion of insects from *Rhynchota* genus that pierce the plants cell and ingest the sap then secrete it again. The bees will then transform by joining with specific substances of their own, deposit, dehydrate, store and keep in the honey comb, where it is left to be ripened and matured. There are few types of honey which are blossom honey, honeydew honey, monofloral honey and multifloral honey (Alvarez-Suarez, Gasparrini, Forbes-Hernández, Mazzoni, & Giampieri, 2014; Codex Alimentarius Commission, 2001). Honey is mainly produced by honey bees, stingless bees, bumblebees and also from hymenopteran insects such as honey wasps.

Honey consists of fructose and glucose (80-85%), water (15-17%), ash (0.2%), proteins and amino acids (0.1-0.4%) and trace amounts of enzymes, vitamins and other substances, such as phenolic compounds (Rao, Krishnan, Salleh, & Gan, 2016). Stingless bees are from the *Meliponini* tribe and have more than one type of genera that include *Trigona*. The *Trigona* spp. which is commonly known as 'Kelulut' is the stingless bees that is found in Malaysia (Kek, Siok Peng Chin, Nyuk Ling Yusof, Yus AnizaTan, Sheau Wei Chua, 2014). *Trigona* species are stingless bees that yield a special honey with a strong acidic taste and the honey is less viscous and darker than

UNIVERSITI TEKNOLOGI MARA

Lansium domesticum COMPONENTS PROFILING BY USING LIQUID CHROMATOGRAPHY – MASS SPECTROMETRY

FARAH IZZATI BINTI AHMAD YANI

Dissertation submitted in partial fulfilment on the requirements for **Bachelor of Pharmacy (Hons.)**

Faculty of Pharmacy

2017

ACKNOWLEDGEMENT

First of all, praise to Almighty Allah S.W.T. because giving me strength and patience to complete this thesis project as a partial fulfilment of the subject Research I and II (PHC 566 and PHC 567). I would like to dedicate my special thanks to all the people who helped me in completing this study. Thanks to my supervisor, Dr Richard Muhammad Johari James, who had supervised me, gave me suggestions and helped me completing this study. His opinions and guidance were very much appreciated.

Special thanks for people who had helped in completion of this thesis which are my lab mates, Nur Syamimi binti Suhaimi and Nur Syahira binti Mohd Salleh, and also a master student, Noor Fahimah binti Saari, for their help and support throughout the thesis period. I would also like to express my deepest gratitude to all my family members for their love, financial and moral support. I am blessed with their unconditional love which has given me the strength and motivation to stay focused and positive in completing this project. Last but not least, I would like to convey my gratitude to anyone else who had contributed directly and indirectly to this thesis.

TABLE OF CONTENT

			Page	
TITI	LE PAGI	E		
ACKNOWLEDGEMENT				
TABLE OF CONTENTS				
LIST OF FIGURES				
LIST OF TABLES				
ABSTRACT				
CHAPTER ONE (INTRODUCTION)				
1.1	Backg	ground of Study	1	
1.2	Proble	2		
1.3	Resea	3		
1.4	Hypothesis		3	
1.5	Signif	ficance of Study	3	
CHAPTER TWO (LITERATURE REVIEW)				
2.1	Lansi	um domesticum	4	
	2.1.1	Intorduction to Lansium domesticum	4	
	2.1.2	Description of Lansium domesticum	4	
	2.1.3	Cultivation of Lansium domesticum	8	
	2.1.4	Nutritional facts of Lansium domesticum	9	
	2.1.5	Uses of Lansium domesticum	10	
2.2	Mitragyna speciosa			
	2.2.1	Introduction to Mitragyna speciosa	11	
	2.2.2	Description of Mitragyna speciosa	11	
	2.2.3	Uses of Mitragyna speciosa	13	
	2.2.4	Effects of Mitragyna speciosa	13	
	2.2.5	Compounds in <i>Mitragyna speciosa</i>	14	

ABSTRACT

Lansium domesticum, locally known as "Dokong", found in the tropics regions of the world, predominantly in Thailand, Malaysia, Indonesia, Philippines and Vietnam. It is also used to alleviate some medial conditions as it possess antidiarrheal, antispasmodic, antipyretic, antimalarial and anti-inflammatory properties. In 2015, Agensi Antidadah Kebangsaan (AADK) Perlis discovered that the "Ketum" addicts are taking Lansium domesticum leaves extract as an alternative to "Ketum" extract due to "Ketum" scarcity after it is banned because of misuse and abuse. "Ketum" addicts claimed that both of the extracts have similar euphoric effect. However, there is insufficient information regarding compounds that may contribute to the euphoric effect in Lansium domesticum leaves extract. The objective of this study is to detect presence of mitragynine in Lansium domesticum leaves extract. Lansium domesticum leaves was extracted by using ethanol solvent (95% ethanol) and aqueous solvent (distilled water). Extracts were prepared using condensation method by rotary evaporator for ethanol extraction and lyophilisation method for aqueous extraction. Both extracts undergone chromatographic analysis by Liquid Chromatography – Mass Spectrometry Quadrupole – Time of Flight (LC-MS QTOF) system. The parameters tested were retention time, m/z value (mass-tocharge ratio) and predicted structure. The results were compared with Mitragyna speciosa chromatographic analysis result. The results showed that mitragynine was absent in Lansium domesticum leaves extracts. The euphoric effect claimed may be due to other compounds present in the leaves extract.

Keywords: *Lansium domesticum, Mitragyna speciosa,* mitragynine, euphoric effect, misuse and abuse, Ketum, Dokong, Liquid Chromatography – Mass Spectrometry Quadrupole – Time of Flight (LC-MS QTOF) system.

CHAPTER ONE

INTRODUCTION

1.1 Background of study

Addiction is a medical condition of uncontrollable and irresistible engagement to stimuli although there are unfavourable after-effects (Nestler, 2013). It is due to intake of licit (e.g. alcohol) and illicit drugs (e.g. marijuana). In a study done in United States, 73% of drug users were employed, with highest licit drugs usage in construction, entertainment and recreation, while highest illicit drugs usage are in food services and construction (Hanson, Venturelli & Fleckenstein, 2012). People abuse drug usually because they want to deal with spiritual, psychological, physical destruction or just for pleasure-seeking purpose (Koob & Moal, 2001). In Malaysia, substance abuse of herbal medicine is increasing (Aziz & Tey, 2009). Mitragyna speciosa, also known as "Ketum", is used in treating diabetes, to increase endurance in strenuous activities and many more. However, its' usage has been banned by the government because of misuse and abuse (Chan, Pakiam & Rahim, 2005). The "Ketum" addicts successfully discovered that "Dokong" leaves extract can replace "Ketum", and claimed to have similar sedative effect as "Ketum" extract (Rahim, 2015). Lansium domesticum, or "Dokong", have some useful uses. Its' resin have anti-spasmolytic properties, and used to treat intestinal spasms and diarrhoea. The product of Lansium domesticum's bark decoction has been used as anti-malarial (Omar, 2003) and to deal with dysentery. Its' leaves juice is able to eliminate