UNIVERSITI TEKNOLOGI MARA

OPTIMIZATION PRODUCTION OF SECONDARY METABOLITES OF MARINE-DERIVED FUNGI BY USING DIFFERENT MEDIA CONDITIONS

NURUL SYAMILA BINTI OSMANI

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Pharmacy (Hons.)

Faculty of Pharmacy

July 2016

ACKNOWLEDGEMENTS

First of all, I would like to thank Allah for his blessing and guidance at every stage of my life and for giving me strength to get me through the process of doing this research. I also would like to express my deep and sincere gratitude to Dr. Syed Adnan Ali Shah for patiently supervising and guiding me, suggest the research project and advised me with very constructive criticism that had contributed immensely helped me throughout this period. He always had extra time for questions and discussions and helping me to improve as well as achieve a clearer structure.

I also would like to express my gratitude to the staffs especially to Mr. Azhar for providing me with materials and chemicals that are needed during this study. Special thanks to Miss Fadzilah, Miss Hajar and Miss Fatimah for their guidance, support, advice and patience in helping me throughout this process. To all my colleagues and those involved directly and indirectly in this study, thank you for your supports and useful comments. Finally yet importantly, my warmest thanks to my family who never failed to send their prayers and for their loving support and patience.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SYMBOLS	X
LIST OF ABBREVIATIONS	xi
ABSTRACT	xii
CHAPTER 1 (INTRODUCTION)	1
1.1 BACKGROUND STUDY	1
1.2 OBJECTIVE	9
1.3 HYPOTHESIS	9
1.4 PROBLEM STATEMENT	9
1.5 SIGNIFICANT OF STUDY	9
CHAPTER 2 (LITERATURE REVIEW)	10
2.1 NATURAL PRODUCTS	10
2.1.1 PRIMARY METABOLITES	11
2.1.2 SECONDARY METABOLITES	11
2.2 FUNGI	12
2.2.1 MARINE FUNGI	12
2.2.2 STATISTIC OF DRUGS FROM MARINE DERIVED FUNGI	15
2.2.3 MARINE DERIVED SECONDARY METABOLITES	16
2.3 MAJOR FUNGAL GROWING FACTOR	25
2.3.1 MEDIA OF GROWTH	25
2.3.2 SALINITY	27
2.3.3 TEMPERATURE	28

ABSTRACT

The marine fungi culture was acquired from Batu Feringhi beach, Pulau Pinang, Malaysia. The fungi were grown in two different temperatures, which were the 28°C and 8°C and it has been shown that the fungi grew better at 28 °C compared to 8 °C. After few times of inoculations in order to obtain pure colony, the fungi were then inoculated onto three different media which are PDA, PDB and MEA and incubated for about 2 weeks at 28 °C. The fungi inoculated on agar media were homogenized before extracted by using homogenizer while the fungi inoculated in the broth are extracted directly without homogenizing the media. Samples were extracted with three times 20 mL of ethyl acetate to separate the organic phase and the medium phase. The upper layer contained secondary metabolites was obtained. The crude extracts were evaporated by using rotary evaporator and subjected for TLC visualization by spotting nine different spots of samples and developed with distinct ratios of mixtures of hexane and ethyl acetate and mixtures of hexane and acetone. Visualizations of samples were maximized when the sample was developed in the mixtures of 10% of hexane and 90% of ethyl acetate and 50% of hexane and 50% of acetone respectively. The TLC plates were then stained with anisaldehyde for further visualization. The initial profiling of secondary metabolites produced by the fungi was done by using HPLC according to the type of media the fungi grew. The chromatogram of MEA media showed more peaks as compared to PDB and PDA media.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND STUDY

The investigation and the discovery of the biologically active products from the nature have been done many years ago, which give a significant benefit to the mankind. The evolution of the drug discovery started with the introduction of antibiotic called penicillin. 1928, while Fleming was looking through his research on the *Staphylococcus* sp. colonies, he accidentally identified a strain of *Penicillium notatum* has inhibited the growth of *Staphylococcus* in one of the petri dishes. Hence, the first ever antibiotic was discovered, which has the capabilities to kill broad range of bacteria.

Since then, new biologically active products have been discovered by the scientist such as Griseofulvin (Figure 1.1) and Cephalosporin C from *Penicillium griseofulvum* and *Cephalosporrium acremonium* respectively. These antibiotics played major role in the depleting the infectious disease for the past few years [1]. This finding has encouraged other researchers to keep on exploring the biologically active products which could be beneficial in the future to combat the emerging diseases more orderly.