STUDY ON FABRICATION OF SIGE N-CHANNEL MOSFET

Thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Honors) in Electrical UNIVERSITI TEKNOLOGI MARA

NOR HAPIZAH BINTI JAMALUS FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR.

ACKNOWLEDGEMENT

Bismillahir Rahmanir Rahim.

All praises be to Allah S.W.T, the Merciful and Beneficent for the strength and blessing me throughout the entire research and completion of this thesis. Peace is upon our prophet Muhammad S.A.W; whose has given light to mankind.

Firstly, I would like to extend my sincere thanks to my beloved supervisor, Pn.

Norulhuda bte Abd Rasheid for her guidance, suggestion and comment throughout the project completion.

My sincere and deepest thanks to all my colleagues, friends, lecturers, staffs of the Faculty of Electrical Engineering especially Rahimah Mohd. Zain @ Abd. Razak, NurJalilah Yahya, Nooreza Esa, Zanaraiah Sa'an, Harnani Hassan and Umi Kalsom Ahmad.

Last but not least, I would like to share my greatest appreciations to my beloved parents, brothers and sisters, for their love and support for me in completing this thesis.

Abstract

SiGe n-channel MOSFET is a new material used in making microchips for less expensive, high performance communications tools. Low energy consumption makes silicon germanium transistors a treasure for many people in microelectronics.

This paper discuss about the developing of Si/SiGe in n-channel MOSFET. SiGe n-channel MOSFET is design for 0.44um channel length using SILVACO TCAD tools. The project involves in measurements of Id-Vd and Id-Vg characteristics which compare between the SiGe n-channel MOSFET and the conventional Si n-channel MOSFET.

The result show that the SiGe n-channel MOSFET has better performance than the conventional Si n-channel MOSFET in terms of the electrical characteristics.

TABLE OF CONTENTS

CHAPTER			rage	
	DECLARATION			iii iv v vi vii
	DEDI			
	ACKNOWLEDGEMENT ABSTRACT TABLE OF CONTENTS LIST OF ABBREVIATIONS			
				ix
1	INTRODUCTION			
	1.1.0	Introduc	tion	1
	1.2.0	Objectiv	ves	2
2	SEMICONDUCTOR THEORY			
	2.1.0	Physics of semiconductor		
	2.2.0	MOSFET THEORY		
		2.2.1 N	METAL OXIDE SEMICONDUCTOR	4
		2.2.2 I	Principal of Operation MOSFET	5
		2.2.3	SIGE Applications	10
3	SILVACO TCAD TOOLS			
	3.1 Deckbuild			
		3.1.1	Overview	11
		3.1.2 F	Features	11
		3.1.3	Simulators	12
		3.1.4	Autointerface	13
		315 F	Execution Control	14

CHAPTER 1

1.1 Introduction

Researcher nowadays very interested in SiGe n_channel MOSFET materials and its application due to the reason that the material has improve properties compared to bulk silicon, higher carrier mobility in strained p-channel or tensile strained n-channel to build the MOSFET. The SiGe n-channel MOSFET has higher speed than conventional Si n-channel MOSFET that have the same technology and same channel length

The main objective of the project is to develop SiGe in n-channel MOSFET. Silicon and Germanium are both well-known as semiconducting elements. Si and Ge have the same crystal structure. Thus the layer of one material can be placed on the other if consistent atomic order is maintained. However, there is an approximately four percent greater natural spacing between atoms in germanium.

Here conventional Si n-channel MOSFET is compared to SiGe n-channel MOSFET with the same channel length and same technology. The channel length used here is 0.44um.