SOLAR IRRADIANCE FORECASTING MODEL USING ARTIFICIAL NEURAL NETWORK (ANN)

Thesis is present in partial fulfillment for the award of Bachelor of Engineering (Hons) Electronic University Teknologi Mara (UiTM)

ACKNOWLEDGEMENT

In the name of Allah, The Most Generous and The Most Merciful. With the deepest sense of gratitude to Allah the Almighty for giving me strength and ability to complete my final year project and thesis.

My deepest gratitude is express to my project supervisor, Dr. Shahril Irwan bin Sulaiman for their advices, guidance, suggestions and ideas during the progress of this project.

My appreciation also goes to my beloved family who has been so tolerant and supports me all these years. Thanks for their encouragement, love and emotional supports that they had given to me.

Last but not least special of thanks dedicated to all members and lecturers who have involved directly or indirectly during the development of this project. Thank you and May Allah bless you.

ABSTRACT

This thesis presents the Artificial Neural Network (ANN) model for predicting solar irradiance. The inputs of the ANN are the solar irradiance values for previous five one-minute intervals while the output of the ANN is the solar irradiance of the sixth-minute interval. The solar irradiance data were obtained from a weather monitoring station at Green Energy Research Centre (GERC) at Universiti Teknologi MARA, Malaysia. During testing, the ANN produced a low mean absolute percentage error (MAPE) of 10.5796% and high coefficient of determination, R² of 0.8925. The results obtained also show that low MAPE value and high R² value had shown that the ANN model has a good predictive performance and was useful in predicting solar irradiance.

TABLE OF CONTENTS

CHAPTER		CONTENT	PAGE
	TITLE		i
	APP	ROVAL	ii
	DEC	CLARATION	iii
	ACK	KNOWLEDGEMENT	iv
	ABS	TRACT	V
	TAB	LE OF CONTENTS	vi
	LIST	viii	
	LIST	Γ OF TABLES	ix
	LIST	Γ OF ABBREVIATIONS	x
1	INTRODUCTION		
	1.1	Background Of Study	1
	1.2	Problem Statement	2
	1.3	Objective	2
	1.4	Scope Of Work	2
	1.5	Thesis Overview	3
2	LITERATURE REVIEW		
	2.1	Introduction	4
	2.2	Previous Study using ANN	4

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Solar irradiance is the portion of the sun's radiation which available at the earth's surface. Solar irradiance also known as a kind of popular renewable energy compared with other energy, like geothermal and tidal [1]. Indeed, this energy useful for many applications, such as increasing the temperature of the water or exciting electrons in a photovoltaic cell. Moreover, it also supplies energy to natural processes like photosynthesis. Solar energy is free, clean and available on the earth throughout the year [2]. In this study, the outputs from a Grid-Connected Photovoltaic (GCPV) system are the data that used as input parameters to predict the solar irradiance.

Artificial Neural Network (ANN) is the one of the popular prediction technique which has the capacity to learn, memorize and create relationships among data [3]. Feedforward and feedback networks are two major categories of ANN. Feed-forward networks have signals travel one way only which is signaled from input to output [4]. Signals that travel in both directions are known as feedback networks. In this study, the feed-forward network was used.