HOLE MOBILITY ENHANCEMENT OF P-MOSFET USING STRAINED SILICON, SiGe TECHNOLOGY

This thesis is presented in partial fulfillment for the award of the

Bachelor of Electrical Engineering (Hons)

of

UNIVERSITI TEKNOLOGI MARA

AZMIRA AHMAD
Faculty of Electrical Engineering
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM
SELANGOR DARUL EHSAN
DISEMBER 2008

AKNOWLEDGEMENT

In the name of God, Most Gracious, Most Merciful, Who had bestowed a knowledge, patience and strength in completing this thesis.

The author wishes a greatly indebted to her supervisor, Encik Ahmad Sabirin Zoolfakar for his help and consideration throughout the project. The author really appreciates all the helps, the ideas, opinions and recommendation given by Mr. Ahmad Sabirin.

The author also would like to forward her appreciation PM Dr. Mohamad Rusop Mahmood as the lecturer for Semiconductor subject. Special thanks to her parents, Ahmad Ismail and and friends for their support and kindness.

Last but not least, the appreciation to those who give comment and suggestion and help the author whether directly or indirectly during completing of the thesis. Thank you.

ABSTRACT

In this project, the hole mobility enhancement of PMOS are studied using SiGe technology. Silicon Germanium (SiGe) are used to increase drive current or hole mobility in the drain and source region. The performance improvements of devices with a gate length of 0.9 µm, 0.8 µm and 0.7 µm were considered. The first part of this project is reviewed about the effect of using SiGe in PMOS process to calculate the mobility. 100% of mobility enhancement using SiGe was observed compared to conventional PMOS SiGe. The second part covers the characteristics for variation of SiGe thickness. Therefore, using SiGe is an efficient method for improving PMOS device performance.

TABLE OF CONTENTS

DECLARATION

i

•	ACKNOWLEDGEMENT	ii
•	ABSTRACT	iii
•	TABLE OF CONTENT	iv
•	LIST OF FIGURES	vii
•	LIST OF TABLES	ix
•	LIST OS ABBREVIATIONS	X
CH	IAPTER	PAGES
1	INTRODUCTION	
	1.1 Introduction	1
	1.2 Objectives	5
	1.3 Scope of work	5
	1.4 Thesis Organization	6
2	LITERATURE REVIEW	
	2.1 Silicon Germanium	7
	2.2 Silicon	14
	2.3 Germanium	16
	2.4 Complementary Metal Oxide Semiconductor	18

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Normally, the drive current of NMOS is larger compared to PMOSFET. After introduced SiGe, the performance of PMOS becomes faster and shown improvement. The concept of combining silicon (Si) and germanium (Ge) into an alloy for use in transistor has been introduced [1]. Nowadays, new technology of introduced strain in silicon channel of MOSFETS is well accepted [2].

Hole mobility is a parameter which is measure of hole scattering in a semiconductor proportionally factor between hole drift velocity and electric field. In addition, it is toward conductivity and hole concentration in semiconductor, due to its higher effective mass. Hole mobility is typically significantly lower than electron mobility.

Increasing the mobility of the semiconductor will improve drive current and transistor speed. This can be achieved by using SiGe. Silicon germanium (SiGe) substrate had exposed enhancements of hole mobility in strained silicon layers [3]. The hole mobility enhancement depends on the current flow direction and the maximum enhancement factor along the direction.

With the application of strain, the hole effective mass becomes highly anisotropic due to band warping. The energy levels become mixtures of the pure heavy, light and split-off bands. Therefore, the light and heavy hole bands lose their meaning, and holes increasingly occupy the top band at higher strain due to energy splitting [4]. Theory predicts that the characteristics of hole-type SiGe device can match that of the electrons, an important step for continuing the efficiency of CMOS device.

Strained Silicon concept that utilized elastic relaxation of a buried compressive SiGe layer to induced tensile in the channel and calculate the channel stress for device structure with a different gate length [5]. The channel length is defined as the distance between its