THE EFFECT OF ETCHING PROCESS OF NMOS STRUCTURE USING SILVACO TCAD TOOLS

Thesis is presented in partial fulfilment for the award of the

Bachelor of Engineering (Honours) Electrical UNIVERSITI TEKNOLOGI MARA

NOVEMBER 2008

MOHD SHAHRIR BIN ABD RAHIM
FACULTY OF ELECTRICAL ENGINEERING
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM
SELANGOR, MALAYSIA

ACKNOWLEDGEMENTS

With the highest praise to Allah which gives the author the energy and spirit to

complete this project successfully. The author would like to express sincere

appreciation and gratitude to Mr. Uzer Mohd Noor as the respective supervisor and

Assoc. Prof. Dr. Mohamad Rusop Mahmood as a co-supervisor for this research.

Special thanks to the lecturers and management of Faculty of Electrical Engineering,

Universiti Teknologi MARA especially to Mr. Suhaimi Ahmad for provide tools at

Solar Cell Laboratory for this research. My sincere appreciation to the PhD student,

Mr. Mohd Zainizan Sahdan and Master students, Mr. Hafiz Mamat and Mr. Khairul

Ahmad for giving their hand, criticism and ideas in making this project a success.

Without their generosity, this research would not be possible to complete.

Not to forget, I also thank to all my colleagues; Mr. Muhamad Yunus Yahaya, Mr.

Ayub Bakri, Miss Suziana Omar, Mr. Muhammad Redzuan Mokhtar, Miss Azmira

Ahmad and Miss Ziadora Ibrahim for their encouragement and support.

Last but not least, deepest appreciation to the author's family for the faith instilled as

a step in manoeuvrings this life.

Above all, I thank Allah for making this journey possible.

Thank you.

MOHD SHAHRIR BIN ABD RAHIM

Faculty of Electrical Engineering

Universiti Teknologi MARA (UiTM)

40450 Shah Alam

Selangor Darul Ehsan

iii

ABSTRACT

The effect due to the etching process of NMOS structure using Silvaco TCAD tools software was investigated using different etching methods by varying the etch rate and divergence rate. The etching methods are isotropic wet etching method and isotropic RIE etching method where the length of polysilicon gate and threshold voltage were decreased by increasing the etch rate. The chemical RIE etching method provided highly selectivity and directionality gives various divergence rates. The directional RIE etching method gave similarities in term of etch profile, junction depth and threshold voltage characteristic compared to the reference geometrical etching method for any etch rate and divergence rate.

TABLE OF CONTENTS

DECLARAT	ION i		
DEDICATIO	Nii		
ACKNOWLEDGEMENTS			
		LIST OF FIG	URES vii
		LIST OF TABLESix ABBREVIATIONSx	
CHAPTER 1			
INTRODUCT	ΓΙΟΝ1		
1.1 1.2 1.3 1.4 1.5	PROJECT BACKGROUND 2 OBJECTIVES OF RESEARCH 6 SIGNIFICANCE OF RESEARCH 6 SCOPE OF WORK 7 ORGANIZATION OF THE THESIS 8		
CHAPTER 2			
LITERATUR	RE REVIEW9		
2.1 2.2 2.3 2.4 2.5 2.6	OVERVIEW OF NMOS 10 POLYSILICON GATE 11 ETCHING METHOD 12 ETCH PROFILES 13 JUNCTION DEPTH 15 THRESHOLD VOLTAGE 16		
CHAPTER 3			
DESIGN ME	THODOLOGY 19		
3.1 3.1.1 3.1.2	SILVACO TCAD TOOLS 20 Overview of Athena 21 Overview of Atlas 21		
3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	- ···· - · · · · · · · · · · · · · · ·		

CHAPTER 1

INTRODUCTION

This project uses Silvaco Technology Computer Aided Design (TCAD) tools software as a fabrication simulation process and device simulation tools. The first chapter of this report will discuss the project background underlying the etching process and the simulation process of N-type Metal Oxide Semiconductor Field Effect Transistor (N-MOSFET) in general. The objectives, significance of research, scope of work and thesis arrangement were also mentioned in this chapter.