DESIGN AND OPTIMIZATION OF A HETERO-JUNCTION SOLAR CELL USING SILVACO SOFTWARE PACKAGES

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Honors) in Electrical Engineering
UNIVERSITI TEKNOLOGI MARA
(NOVEMBER 2006)

MUHAMMAD FAIRUZ OSMAN

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR, MALAYSIA

ABSTRACT

In this paper, the design and optimization of a hetero-junction solar cell, utilizing a simulation using Silvaco software packages have been demonstrated. This paper has investigated the design of a hetero-junction solar cell. In this study, a hetero-junction of GaAs/AlGaAs solar cell and a single p-n junction Si solar cell were simulated. Firstly, fundamentals of solar cell operation and performance have been presented. The basic advantage and operation of hetero-junction solar cells were discussed. Then, the important design issues have also been discussed. The simulation of the solar cells using Silvaco TCAD Tools consisted of processes simulation of constructing solar devices in ATHENA and simulation of electrical characteristics of solar devices in ATLAS. The results from both simulations of the hetero-junction of GaAs/AlGaAs solar cell and a single p-n junction Si solar cell were analyzed to compare their performances. Then, the paper was concluded with an argument that the design of hetero-junction solar cells will be improved in the future and the technology can become a feasible widespread power source. Finally, the future design improvements have been suggested.

ACKNOWLEDGEMENT

First and foremost I would like to express my deepest gratitude to God for giving

me chances, time and inspiration to complete this final year project thesis.

Then, my gratitude goes out to my respected and dedicated supervisor Assoc.

Prof. Dr. Mohamad Rusop and my co-supervisor Mr. Uzer Mohd Noor. Thanks for their

encouragement, guidance and support.

Not forgetting to other lecturers at the Faculty of Electrical Engineering of UiTM.

Thanks for their countless help and support. May my good and hard times with them

bring me experiences and success.

I also want to thank my beloved family for being so supportive physically,

mentally and financially.

I also appreciate the help from my fellow good-hearted classmates and colleagues,

directly or indirectly.

Lastly, without these awesome people, this thesis of the project would not be here

today. I am really glad to have these people around.

"Excellence is never an accident; it is always the result of high intention, sincere efforts,

intelligent direction, skillful execution and the vision to see obstacles as opportunities."

Muhammad Fairuz Osman

NOVEMBER 2006

ii

TABLE OF CONTENTS

CHAPTER	PAGE
DECLARATION	i
ACKNOWLEDGMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	viii
LIST ABBREVIATIONS	ix
1. INTRODUCTION	
1.1. Overview	1
1.2. Objective of the project	3
1.3. Scope of the project	4
1.4. Organization of the thesis	6
2. A BRIEF OF THEORY	
2.1. Elementary of Solar Cell and Function	8
2.2. Fundamental Solar Cell Concepts	11
2.3. Single-Junction Solar Cell Design	15
2.4. Basic Concept of Hetero-Junction Solar Cel	lls 16
2.5. Design Considerations	17

CHAPTER 1

INTRODUCTION

1.1 Overview

One of the biggest challenges mankind will face today is how to supply the increasing need for energy. With the shortage of fossil fuels these days, it is needed to consider renewable sources of energy such as photovoltaic devices. Photovoltaic devices are a promising technology that directly takes the advantage of the ultimate source of power, the Sun.

When exposed to light, solar cells are capable of producing electricity without any harmful effect to the environment or device, which means they can generate power for many years while requiring only minimal maintenance and operational costs. Currently the wide-spread use of photovoltaic devices over other energy sources is limited by the relatively high cost and low efficiency of solar cells.

Hetero-junction solar cells are a new technology that offers a higher efficiency compared to traditional solar cells made of a single layer of semiconductor material. Depending on the particular technology, hetero-junction solar cells are capable of generating much more power under the same conditions as traditional solar cells made of silicon.

This paper will investigate the design of hetero-junction solar cells. First, fundamentals of solar cell operation and performance will be presented. The basic advantage and operation of hetero-junction solar cells will be discussed. Then, the paper will discuss important design issues.