PO TE
UNIVERSITI
« TEKNOLOGI

<> MARA

COMPASS

Compilation of Pahang Scholars’ Synergy

Year 2011 ISSN 1985-9937

Computer Problem Solver (CoPS): A Better
Understanding of Problem Solving in Computer
Programming

Roslan Sadjirin, Ikhsan Md Raus, Haslinda Noradzan,
Nursyahidah Alias, Nor Zalina Ismail, Mohd Norafizal Abd Aziz,
Muhd Eizan Shafiq Abd Aziz, Zazaleena Zakariah,

Fazlin Marini Hussain, Siti Nurbaya Ismail, Norhafizah Hashim

ABSTRACT

The introduction course to computer programming is considered one of
the most difficult courses by Computer Science students in Universiti
Teknologi MARA Pahang (UiTM). The students’ results for every
semester in the Computer Programming course is always average. In
order to enhance understanding of programming concepts and the skills
in problem solving, an improvisation of the teaching and learning method
is introduced and implemented on the first year students of UiTM
Pahang. Therefore, this paper presents the introduction of the teaching
and learning method called Computer Problem Solver (CoPS) for the
teaching and learning of the Computer Programming course to the first
year computer science students in their of UiTM Pahang.

Keyword: Teaching, Learning, Computer Problem Solving,
Programming Competency

Introduction

The Computer Programming course is one of the most important courses
in computer sciences and computer engineering studies (Mancy and Reid,
2004). However, the first programming course has always been a major
stumbling block for many students in computer science studies and it is
known for its notoriously poor pass rate (Proulx, 2000; Mancy and Reid,
2004; Bennedsen and Carpesen., 2007). Jenkins and Davy (2000) argue
that learning programming is not as easy as teaching it. While Bennedsen
and Carpesen (2005) state that the most crucial part of the first
programming course is the process of instructing the students about the
systematic approach of the development of computer programs. However
Bennedsen er. al, (2005) further explain that this important part is not
addressed in textbooks.

19

Experience show that learning programming at the tertiary level
is not easy as students continue to struggle even when writing the
simplest computer programs. The main concern of educators or
instructors is how to make the learning of the basic concepts of computer
programming less complicated and easier to comprehend for the students.
Greca, etal, (2003) state that in a computer programming course,
teaching and learning are two complex issues that are related. A good
teaching approach can improve learning, and improved learning can make
teaching more effective as students become more successful. Thus, both
factors determine the success rate in an introductory programming course.

Many studies have been carried out and numerous methods have
been designed to help students of computer sciences in improving their
skills in learning and writing computer programming. These methods
include object oriented approach (Kolling and Rosenberg, 1996),
programming pattern design (Proulx, 2000), pair programming
(Gehringer, 2003; Thomas, et.al, 2003), hypertext based system (Kay and
Kummerfeld, 1994), information processing model (Mancy et.al, 2004),
game-based approach (Rajaravivarma, 2005), and model-driven or
instructional design (Caspersen, et.al, 2007).

However, the studies on teaching to write a computer program
are still an active research and it seems that there is no appropriate
method that can be implemented or adapted in teaching programming
course. Proulx (2000) explained that even bright students can get lost
when asked to write the simplest program even though the standard ways
or phases of writing a computer program start from analysis, followed by
design, and then implementation and eventually the testing phase. One of
the reasons why the students face difficulties in writing the program is the
lack of problem solving skills.

Studying computer programming requires students to think
visually and critically. Thinking visually is concerned with what is
needed to be solved. Whereas thinking critically is; addressing the issues
on how to solve the programming problem and how to do it. Therefore,
this paper presents the improvisation method of teaching the first
computer programming course to the first year students of Diploma in
Computer Science of Universiti Teknologi MARA (UiTM) Pahang.

Computer Problem Solver (CoPS)

This section explains the concept of the Computer Problem Solver
(CoPS) method and some techniques that are used in the method.

20

Teaching and Learning Method

CoPS is a method of teaching computer programming that combines
problem based learning (PBL) and cooperative learning techniques with
the help of Basic Card for Programming. The next section discusses the
PBL, cooperative learning and Basic Card for Programming.

Problem Based Learning and Cooperative Learning

Problem based learning is one of the techniques in teaching and learning
method. In problem based learning, the students are exposed to the
problems that are relevant and contextual to the real world situations.
Furthermore, cooperative learning is a learning technique in which a
small group of students, usually two to four students, with different
abilities is formed and each member of the group is responsible for the
learning and helping group members to learn in an informal way
(Kementerian Pengajian Tinggi Malaysia, 2006).

Therefore, with the help of the KAP (Basic Card for
Programming), which has been designed and with the combination of the
cooperative learning and the problem based learning in question, we have
come up with the improvised teaching and learning method to be used in
teaching the first year Computer Programming course to Computer
Science students in UiTM Pahang.

Basic Card for Programming

Basic Card for Programming is based on the idea of programming
development phase. It is well known that the standard ways of computer
problem solving are the same as the steps in computer programming
which are:

Step (1): Understand the problem

Step (2): Identify the program’s objective

Step (3): Identify the input and constant

Step (4): Identify the process; and lastly

Step (5): Identify the output.

However, in the CoPS method, some of the sequences are changed. The
sequence of computer problem solving in this method are as follows:

Step (1): Understand the problem

Step (2): Identify the program’s objective

Step (3): Identify the output

Step (4): Identify the input and constant; and lastly

Step (5): Identify the process

Note that step (3) in the computer programming steps becomes
step (4) in the CoPS method, while step (4) and step (5) in the computer
programming steps becomes step (5) and step (3) respectively in the
CoPS method. The idea behind this method is that, before designing the
steps’ solution or algorithm for a particular problem, the student should
understand, and be able to visualize and imagine what are the outputs or
outcomes of the program. After knowing the outputs, the students should
investigate and understand the required inputs in order to produce the
correct outputs. Eventually, after the outputs and the inputs have been
identified, the students will be able to formulate the processes or
formulae, as well as give the suitable names for identifiers or variables for
the program.

The analogy for the process of the CoPS is like preparing
delicacy. For instance, if one wants to bake a cake, the type or flavour of
the cake must be identified first. Hence the required ingredients to
produce the cake will be much easier to identify. Next, after the type of
cake and the ingredients have been identified, only then will the process
and steps of producing the cake can be formulated in a simple and
structured way.

Figure 1 below presents the steps for computer problem solving
used in CoPS method and the steps in computer programming phase.

——— I Steps in computer problem solving J

Uhierstend e [Stepsin computer programming]
the problem

Step 2
identify the
program's
objective

Identify
the input
and
constant

Identify
process

Step3

Identify
the output

ol

Figure 1: Steps in computer problem solving and computer programming

22

The lined arrow in Figure 1 shows the steps in computer
problem solving used in the CoPS, whereas the dotted arrow in Figure |
shows the steps in computer programming. Table 2 further explains the
steps in computer problem solving for CoPS method as shown in
Figure 1.

Table 2: Explanation of the Steps in Computer Problem Solving for the
CoPS Method and the Steps in Computer Programming

Steps / Phase Explanation

Understand the problem | Student needs to visualize overall re-
quirements of the problem (what)

Identify the program’s Student needs to understand the precise
objective requirement of the problem (what)
Identify the output Student needs to determine the output

produced by the program (what)

Identify the input and con- | Student needs to define the input and the
stant constant of the program (what)

Identify process Student needs to identify steps for the
problem solving and transfers it into an
algorithm (what and how)

Some alterations have been done in the ways of solving a
computer problem for computer programming. This improvisation is
done to enhance the critical thinking and visualization capability of
students in computer problem solving. In the standard way of problem
analysis, students are required to identify input, and then process and
eventually the output (Input — Process— Output).The formal process
of identification is usually done in sequence which requires critical
thinking by the students, hence will slow down the process of solving a
problem in computer programming.

In the CoPS method, if the students are unable to visualize, it is
assumed that they cannot think critically, they will not be able to come up
with the correct solution. Therefore, the CoPS method improvises the
formal sequence of the computer problem solving method for computer
programming. The students should visualise and think of the outputs
(what the outcome look

23

like), then identify the possible inputs. Lastly, formulate the processes
from the inputs and outputs obtained (Input — Process —»Output).

The interchange involved between the three phases and replaced
by a new sequence of steps is as follows; (Input—Process —»Output)
to (Output— Input— Process). It is presumed that after determining
the precise requirements of the problem in the program’s objective, the
students can easily recognize the desired output of the program. The next
step is identifying the input and constant value that are involved to
execute the process. The output requirement obtained in the previous step
will help the students to discover the input and constant values that will
produce the output. Lastly, the student will be able to come up with the
process which consists of formulae and algorithm of the program.

Methods of Computer Problem Solver (CoPS)

There are four steps involved in the CoPS method:

1. Lecture session

2. Prepare PBL based programming tutorial for students

3.Use the basic card for programming (KAP) to solve problem
for computer programming to specify output, input and
process as well as to design algorithm for the program

4.Transfer the designed algorithm into source code according to
steps in computer programming.

After conducting the lecture session, in a group of two to four,
students are given programming questions based on a real world problem.
Students are required to analyse the requirements of the problem
including the output, input, process and algorithm or steps of the program
by writing down the answer in KAP.

Figure | shows a basic card for programming (KAP) that is used
to solve problems for computer programming. The final step in the CoPS
method is the process of transferring the information gathered in KAP
into a source code as shown in Figure 2.

24

Example Problem:
If vou arz siven ths radins of a circle. vou can calculats the arza of that circle. Writz a complsts C—
program to calculats and displavs tha araa of tha circle. Assume tha valua of PIis 3.142

Output Variables: | Input Variables: Processing Items:
araa . » | radius arsa
i Constant Values: Formula ' Process
t » [PI=3142 ar=a =PI * radius * radius

Steps ' Solution Algorithm

| 1. Gt input (from keyboard) €4 - - - 4
Read valus of radius '

2. Calculats area (in CPU and Memor e
arza =PI * radius * radins ! [

1. Display output {to scraen consolade-L---4-4
Print arza !

Figurs 2: Exampls of computsr programming problam

#include <igstxess b>
#include <math.h>
~oid main||

(

| | //declaration of input variable

| g iy
i putvanae float const PI = 3.142;
7 > ;i::fl::::xm of output variables processing items

//prompt for input
coup < “Enter ralue of radius of a circle @ ": 4
S3G >> radius:

//processing
area = PI * poy (radius, 2): 4

/idisplay output
sout << "The area of a circle 1s ™ << area: ¢ —--

Displzy orpx

]

Figure 2: Example of computer programming source code in C++

Summary

The introduction and implementation of the CoPS method for teaching
computer programming and computer problem solving to the first year
students have instilled passion in the students as well as enhanced their
capability in solving a computer problem and writing a computer
program. Employing the CoPS method in teaching the computer
programming can not only decrease the percentage of failure rates but
also increase the number of high achieving students, as the CoPS helps
students solve the computer problem and enhances their technical skills
in writing a computer program. The CoPS method can also enforce the
ability of the students to visualise the outcome of the computer program
before embarking in the next steps of the computer programming phases.

25

This study suggests that the CoPS method can improve the teaching and
learning method for the first year programming course and help students
enhance their problem solving skills and ability to understand as well as
practice the creative way of solving a computer programming problem.

References

Bennedsen, J., Caspersen, M. E, (2005). Revealing the Programming
Process. Proceedings of the 36th SISGCSE Technical
Symposium on Computer Science Education (SIGCSE’05): Vol.
37(1), pp. 186-190. ACM, New York, USA.

Bennedsen, J., Caspersen, M. E., (2007). Failure Rates in Introductory
Programming. The ACM SIGCSE Bulletin: Vol. 39 (2), pp.32-
36. ACM, New York, USA.

Caspersen, M. E., Bennedsen, J., Larsen, K. D. (2007). Mental Models
and Programming Aptitude. Proceedings of the 12th annual
SIGCSE conference on Innovation and Technology in Computer
Science Education (ITiCSE'07): Vol. 39(3), pp. 206-210. ACM,
New York, USA.

Gehringer, E. F. (2003). A Pair-Programming Experiment in a Non-
Programming Course. Proceeding OOPSLA '03 Companion of
the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications: pp. 187-
190. ACM, New York, USA.

Greca, A., Jovanovic, V., Harris, J. (2003). Enhancing Learning
Success In The Introductory Programming Course. 33'd ASEE
IEEE Frontiers In Education Conference: pp. TC4-15-TC4-
21, IEEE.

Jenkins, T, Davy, J. (2000). Dealing With Diversity In Introductory
Programming. 8th Annual Conference on the Teaching of
Computing. LTSN Centre For Information And Computer
Science. Edinburgh.

Kay, J, Kummerfeld, R. J. (1994). An Individualised Course for the C

Programming Language. Proceeding of World Wide Web
Conference Series.

26

Kementerian Pengajian Tinggi Malaysia. (2006). Modul Kursus: Asas
Pengajaran dan Pembelajaran Pensyarah Baru IPTA. Pusat
Penerbitan Universiti, UITM.

Kolling, M., Rosenberg, J., (1996). An Object-Oriented Program
Development Environment For The First Programming Course.
Proceedings of the 27th SIGCSE Technical Symposium on Com
puter Science Education: Vol 28(1). pp.83-87. ACM, New York,
USA.

Mancy, R, Reid, N. (2004). Aspects of Cognitive Style and Program
ming. Proceedings of the Sixteenth Annual Workshop of the
Psychology of Programming Interest Group: pp.1-9. Carlow,
Ireland.

Proulx, V. K. (2000). Programming Patterns and Design Patterns in the
Introductory Computer Science Course. Proceedings of the 31st
SIGCSE Technical Symposium on Computer Science Educa
tion: 32(1), pp. 80-84. ACM, New York, USA.

Rajaravivarma, R. (2005). 4 Games-Based Approach for Teaching the
Introductory Programming Course. The ACM SIGCSE
Bulletin. Vol 37 (4), pp. 98-102. ACM, New York, USA.

Thomas, L., Ratcliffe, M. & Robertson, A . (2003). Code Warriors and
Code-a-Phobes: A Study in Attitude and Pair Programming.
Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education: Vol. 35(1), pp. 363-367. ACM,
New York, USA.

ROSLAN SADIJIRIN, MOHD IKHSAN MD RAUS, HASLINDA
NORADZAN, NURSYAHIDAH ALIAS, NOR ZALINA ISMAIL,
MOHD NORAFIZAL ABD AZIZ, MUHD EIZAN SHAFIQ ABD
AZIZ, ZAZALEENA ZAKARIAH, FAZLIN MARINI HUSSAIN, SITI
NURBAYA ISMAIL, NORHAFIZAH HASHIM, Fakulti Sains
Komputer Dan Matematik UiTM Pahang, Universiti Teknologi MARA
Malaysia, roslancs@pahang.uitm.edu.my.

27

