DEVELOPMENT OF ACTIVE POWER FILTER USING RECTIFIER BOOST TECHNIQUE

This project report is presented in partial of fulfillment for the award of the Bachelor of Electrical Engineering (Honours) of UNIVERSITI TEKNOLOGI MARA

MALAYSIA

RAHIMI BIN BAHAROM FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40000 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my project supervisor, *Prof. Madya Dr. Mohd Fadzil Bin Saidon* for his idea, guidance and support on developing this project. My appreciation also goes to *Mr. Mustafar Kamal Hamzah* for teaching and understands me about the path of component that been used in this project. I would also like to express my utmost gratitude to *Prof. Madya Dr. Ahmad Maliki Omar* for his numerous ideas and assistance. I would like to give my sincere thanks to my family for their support and to all who have been involved directly or indirectly. Not forget a million of thanks also to all my friends for their moral support and guidance. May Almighty Allah bless and reward them for their generosity.

RAHIMI BIN BAHAROM

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA

40000 SHAH ALAM, SELANGOR

ABSTRACT

This project concern with the study of a method for the reduction of harmonic distortion in power systems that have the non-linear load. These project develop active power filter using rectifier boost technique to eliminate the harmonic problems. The technique of a single-phase diode bridge rectifier with the capacitor filter, followed by a boost stage containing only one switch and one boost-inductor. This strategy results the eliminating of the harmonic distortions and will be improve the power factor to unity of the rectifier circuit. This is achieved through the use of boost technique in wave shaping the supply current to be sinusoidal and in-phase with the supply voltage. This compensation strategy is analyzed using PSIM and verified in experimental implementation. The results show close agreement between the simulation and experimental explorations.

TABLE OF CONTENTS

CHAPTER DESCRI	PTION	PAGE
DECLARATION		i
ACKNOWLEDGEMENT		iii
ABSTRACT		iv
TABLE OF CONTE	NTS	v
LIST OF FIGURES		viii
LIST OF TABLE		хi
ABBREVIATIONS LIST OF SYMBOLS		xii
		xiii
CHAPTER ONE	INTRODUCTION	
1.1	Introduction	1
1.2	Basic concept of rectifier	2
1.3	Single-phase diode bridge rectifiers	4
1.4	Effects of the discontinuous supply current	6
1.5	Basic analysis of bridge rectifier	7
1.6	Scope of work	8
1.7	Organization of the thesis	9
CHAPTER TWO	HARMONICS	
2.1	Introduction	10
2.2	History of Harmonics in power system	11
2.3	Linear and Nom-linear load	13

CHAPTER ONE

1.1 INTRODUCTION

A rectifier that converts an ac voltage to a unidirectional voltage is used as a dc power supply for many electronics circuits. A rectifier is also called an ac-dc converter. The rectifier normally employs diodes with capacitor filter at the output. This will results in discontinuous and non-sinusoidal current being drawn from the supply system. This has contributed to high total harmonic distortion (THD) of the supply current. Therefore in this work, problem will be addressed and corrected so that the supply current in now continuous, sinusoidal and in-phase with the supply voltage. In this way, the proposed strategy will help to eliminate the harmonic distortions by improve the supply current waveform and correct the supply power factor to unity.