UNIVERSITI TEKNOLOGI MARA

NUMERICAL SOLUTION OF UNSTEADY MICROPOLAR NANOFLUID MODEL OVER EXPONENTIALLY CURVED SURFACE WITH CHEMICAL REACTION USING BVP4C

ANAS SOLIHIN BIN KHALILI MUHAMMAD AMIRUL BIN NOOR RASHID

Bachelor of Science (Hons.) Mathematics

ABSTRACT

The purposes of the present study are to investigate the unsteady behaviour caused by a chemical reaction in micropolar nanofluids flowing over exponentially curved surfaces. Micropolar nanofluids exhibit microstructural properties and enhanced thermal characteristics due to the presence of suspended nanoparticles, which promises advantages in industrial heat transfer applications. Based on similarity transformations, the governing partial differential equations (PDEs) for momentum, micropolar, energy, and concentration are derived and reduced into a system of nonlinear ordinary differential equations (ODEs). These ODEs are numerically solved using byp4c solver in MATLAB, a collocation method for boundary value problems. The output is compared with the results in articles using the shooting method for validation of those obtained with bvp4c. After validating the method, the study would be directed towards evaluating the effect of various physical parameters such as curvature k, unsteadiness β , micropolar K, Prandtl Pr and Schimdt Sc number. The effect of parameters is studied on all four profiles: velocity $f'(\eta)$, micropolar $h(\eta)$, temperature $\theta(\eta)$ and concentration $\phi(\eta)$ profiles. It is found that $f'(\eta)$ increases as the k and K increase, while $h(\eta)$ enhances when β increases but diminishes for K. Curvature parameter k also enhances both $\theta(\eta)$ and $\phi(\eta)$. Pr increases $\theta(\eta)$, however Sc decreases $\phi(\eta)$.

TABLE OF CONTENTS

		Page	
SUP	PERVISOR'S APPROVAL	i	
AUTHOR'S DECLARATION			
ABS	iii		
ACI	KNOWLEDGEMENT	iv	
TAB	BLE OF CONTENTS	V	
LIST	ST OF TABLES	viii	
LIST	ST OF FIGURES	ix	
LIST	ST OF ABBREVIATIONS	X	
LIST	ST OF NOMENCLATURES	xi	
~~~			
CHA	APTER ONE INTRODUCTION	1	
1.1	Research Background	1	
1.2	Problem Statement	5	
1.3	Research Objectives	6	
1.4	Research Question	6	
1.5	Significance of Study	6	
1.6	Limitation	7	
1.7	Scope of Study	7	
1.8	Definition of Terms	8	
CHA	APTER TWO LITERATURE REVIEW	10	
2.1	Introduction	10	
2.2	Unsteady Micropolar Nanofluid	10	
2.3	Exponentially Curved Surface with Chemical Reaction	12	
2.4	Bvp4c	13	

CHA	PTER T	THREE RESEARCH METHODOLOGY	15		
3.1	Introduction				
3.2	Research Framework				
3.3	Phase 1				
	3.3.1	Governing equation of fluid dynamics (PDE)	16		
	3.3.2	Similarity transformation	19		
	3.3.3	Reducing Governing Equation (ODE)	19		
3.4	Phase 2				
	3.4.1	Bvp4c Function	40		
	3.4.2	Initial Guess Code	40		
3.5	Phase	3	42		
	3.5.1	Comparing the result to existing method (shooting method)	42		
	3.5.2	Presenting the result obtained by applying the bvp4c solver	42		
CHA	PTER I	FOUR RESULTS AND DISCUSSIONS	43		
4.1	Introd	uction	43		
4.2	Validation of The Method				
4.3	Preser	at Results	44		
4.4	Effect of Curvature, $k$ and Micropolar, $K$ Parameter on Velocity Profile				
	4.4.1	Effect of Curvature Parameter, k	47		
	4.4.2	Effect of Micropolar Parameter K	48		
4.5	Effect of Unsteadiness, $\boldsymbol{\beta}$ and Micropolar, $\boldsymbol{K}$ Parameter on Micropolar Profile				
	4.5.1	Effect of Unsteadiness Parameter, $\beta$	49		
	4.5.2	Effect of Micropolar Parameter, K	50		
4.6	Effect of Curvature, $\boldsymbol{k}$ and Prandtl Number, $\boldsymbol{Pr}$ on Temperature Profile				
	4.6.1	Effect of Curvature Parameter, k	52		
	4.6.2	Effect of Prandtl Number, Pr	53		
4.7	Effect	of Curvature, $\boldsymbol{k}$ and Schmidt Number, $\boldsymbol{Sc}$ on Concentration Profile	53		

	4.7.1	Effect of Curvature Parameter, k	54	
	4.7.2	Effect of Schmidt Number, Sc	55	
СНА	PTER I	FIVE CONCLUSION AND RECOMMENDATION	57	
5.1	Introd	luction	57	
5.2	Concl	usion	57	
5.3	Recommendation			
REF	ERENC	CES	59	
APP	ENDICI	ES	63	