UNIVERSITI TEKNOLOGI MARA

SIR MODEL APPLICATION IN URBAN SETTINGS: UNDERSTANDING DENGUE SPREAD IN HIGH-RISK AREAS

IZZAH FARHANA ZAINAL TUAN NORHANAN NADIA BINTI TUAN A TALIB

Bachelor of Science (Hons.) Management Mathematics

July 2025

ABSTRACT

Dengue fever remains a major health problem in tropical and subtropical cities of the world, carrying millions of infections and thousands of deaths each year. This study investigates the dengue transmission in two districts located in Selangor, which is Ulu Langat and Petaling, that are at high risk of dengue. Applying the Susceptible-Infected-Recovered (SIR) epidemiological model, the study aims to solve the SIR model using Euler's method, simulate the transmission and recovery rate and identify the relationship between the abundance of dengue disease and rainfall. Based on the transmission and recovery rate, the dengue cases for year 2025 to 2028 are predicted. According to the findings, there are different trends in prediction in the two districts between 2025 and 2028. Ulu Langat is expected to show a significant rise in the dengue cases in 2026 and 2027, which will be followed by a slowdown in 2028. On the other hand, Petaling also experiences a growing and increasing trend which are expected to peak in 2026 and start to decline in 2027 and further in 2028. Additionally, there was a significant positive correlation between the rise in rainfall and dengue cases especially during the first weeks of the year, which emphasizes the importance of environmental factors in the spread of the disease. The study, however, also shows that heavy rainfall itself is not enough to maintain long-term outbreaks and this highlights the need of a combination of both the integrated public health measures and management of the environment. This study shows how mathematical modelling can be useful in predicting the patterns of the disease and provided a useful lesson to the agencies of public health in order to maximize the use of their resources to improve the control and prevention of dengue. Further monitoring and flexible public health programs are important in reducing the effects of dengue in these susceptible urban environments.

TABLE OF CONTENTS

		Page	
SUP	ERVISOR'S APPROVAL	i	
AUTHOR'S DECLARATION			
ABS	iii		
ACK	iv		
TAB	V		
LIST	vii		
LIST	ix		
LIST	T OF SYMBOLs	xi	
LIST	xii		
CHA	APTER 1 INTRODUCTION	1	
1.1	Research Background	1	
1.2	Problem Statement	3	
1.3	Research Objectives	3	
1.4	Significance of Study		
1.5	Limitation		
1.6	Scope of Study	5	
1.7	Background Study	5	
	1.7.1 Description of SIR Model	5	
	1.7.2 Parameter Estimation	5	
1.8	Definition of Terms	6	
CHA	APTER 2 LITERATURE REVIEW	8	
2.1	Introduction	8	
2.2	Dengue Spread Dynamics in Urban Settings	8	
2.3	SIR Model	9	
2.4	Factors that Influenced Transmission and Recovery Rate	10	

CHA	PTER 3 RESEARCH METHODOLOGY	11
3.1	Introduction	11
3.2	Flow of Methodology	11
3.3	Data Collection	12
	3.3.1 Data of Population in 2024	12
3.4	Solving SIR Model Using Euler's Method	15
	3.4.1 Euler's Method	15
3.5	Find The Transmission Rate, α and Recovery Rate, β	17
3.6	Simulation of the Number of Infected and Recovered Individuals for 2025,	
	2026, 2027 and 2028	20
3.7	Validation of SIR Model to the Relationship Between the Abundance of	
	Dengue Disease and Rainfall	21
СНА	PTER 4 RESULTS AND DISCUSSIONS	23
4.1	Introduction	23
4.2	To Solve the SIR Model Using Euler's Method	23
4.3	To Simulate the Number of Susceptible, Infected and Recovered	
	Individuals by Using the SIR Model	24
	4.3.1 The Transmission Rate, α and Recovery Rate, β for the Year 2024 24	
	4.3.2 The Simulation Number of the Susceptible, Infected and	
	Recovered Individuals for the Year 2025, 2026, 2027 and 2028	26
4.4	To Identify the Relationship Between the Abundance of Dengue Disease	
	and Rainfall	37
СНА	PTER 5 CONCLUSION AND RECOMMENDATIONS	40
5.1	Conclusions	40
5.2	Recommendations	41
REF	ERENCES	43
APP	ENDICES	46

LIST OF TABLES

Tables	Title	Page
Table 3.1	Population of Ulu Langat for the year 2024	12
Table 3.2	Continuation of Population of Ulu Langat for the year 2024	
		13
Table 3.3	Population of Petaling for the year 2024 for the year 2024	14
Table 3.4	Continuation of Population of Petaling for the year 2024	15
Table 5.1	The Transmission Rate and Recovery Rate of Dengue	
	Disease for Year 2024 in Ulu Langat	47
Table 5.2	Continuation of The Transmission Rate and Recovery Rate	į
	of Dengue Disease for Year 2024 in Ulu Langat	48
Table 5.3	The Transmission Rate and Recovery Rate of Dengue	
	Disease for Year 2024 in Petaling	50
Table 5.4	Continuation of The Transmission Rate and Recovery Rate	
	of Dengue Disease for Year 2024 in Petaling	51
Table 5.5	The Simulation of Susceptible, Infected and Recovered	
	Individuals for Dengue Disease for Year 2025 in Ulu	
	Langat	54
Table 5.6	Continuation of The Simulation of Susceptible, Infected	
	and Recovered Individuals for Dengue Disease for Year	
	2025 in Ulu Langat	55
Table 5.7	The Simulation of Susceptible, Infected and Recovered	
	Individuals for Dengue Disease for Year 2026 in Ulu	
	Langat	56
Table 5.8	Continuation of The Simulation of Susceptible, Infected	
	and Recovered Individuals for Dengue Disease for Year	
	2026 in Ulu Langat	57
Table 5.9	The Simulation of Susceptible, Infected and Recovered	
	Individuals for Dengue Disease for Year 2027 in Ulu	
	Langat	58