

UNIVERSITI TEKNOLOGI MARA

**PROCESS PARAMETER
OPTIMISATION IN RELATION TO
SENSORY EVALUATION AND
PRODUCTION OF REBAUDIOSIDE
A AND STEVIOSIDE OF *Stevia*
rebaudiana VARIETY MS012 USING
RESPONSE SURFACE
METHODOLOGY**

NUR SABREENA BINTI ABDUL HALIM

Dissertation submitted in partial fulfillment
of the requirements for the degree of
**Master of Science
(Plant Biotechnology)**

Faculty of Plantation and Agrotechnology

December 2018

ABSTRACT

Stevia rebaudiana has been selected in this study due to its high intensity of sweetness. In this study, two accessions were chosen which were MS012a from MARDI and MS012b from UKM, Bangi. A large number of sample involvement has led to the ineffective cost of research material and time. Additionally, the use of high performance liquid chromatography (HPLC) for *S. rebaudiana* analysis involves high costs equipment, laborious technique and expensive chemicals utilisation. Finally, the lingering aftertaste and bitterness of *S. rebaudiana* extract have caused this plant unfavorable among consumer. These problems led to the approach on less expensive and effective ways of production without compromising product quality. Thus, the response surface methodology (RSM) application was the solution to a large number of sample involved through parametric optimisation. Besides, *S. rebaudiana* extraction in this study was using water which is cost-effective extraction solvent. The extraction was influenced by three variables which were temperature, particle size and duration. Refractometer was used in determining the content of stevioside and rebaudioside A as an alternative for preliminary analysis prior to HPLC quantification. The correlation values between both analyser was determined. The 9-point hedonic scale was applied in order to determine the consumer acceptance towards the optimised sample at sweetness, bitterness and aftertaste attributes. The optimisation of MS012a and MS012b extraction suggested the optimum condition at the temperature of 92°C, particle size 0.7 mm and duration of 4.7 minutes with 2.1521% and 2.0532% of stevioside and rebaudioside A content respectively. The verification value of *S. rebaudiana* obtained is less than 5% with 2.11% for MS012a and 1.99% for MS012b that shows a significant verification value. Tukey's test conducted has highlighted that optimised sample gave a significant output for both accessions. Furthermore, the correlation values for both refractometer and HPLC analysers showed Pearson coefficient, r value of 0.986 and the p-value of 0.000 (MS012a) whereas MS012b, showed r value of 0.998 with p-value 0.000. Besides, the scatter plot shows the linear correlation for both accession. This proved that refractometer was able to detect stevioside and rebaudioside A. ICP analysis was performed for MS012a and MS012b which resulted in 0.02 ppm (Hg) and 0.03 (Pb), 0.03 ppm (Hg) and 0.05 ppm (Pb) respectively. Analysis of 9-point hedonic scale for sensory evaluation for MS012a and MS012b via a Mann Whitney test revealed that there was insignificant of p-value for sweetness attributes with 0.4499 and 0.6625. Significant p-values of 0.0256 and 0.0108 for bitterness and 0.0041 and 0.0256 for aftertaste are produced for MS012a and MS012b respectively. This shows that the optimised sample extracts was accepted by the panelist with the insignificant result for sweetness attribute. The results in this study suggested that RSM can be applied for *S. rebaudiana* parametric optimisation, the refractometer can be used to detect stevioside and rebaudioside A and the taste acceptance of optimised sample by the panelist. The ICP analysis conducted was to ensure the safety of *S. rebaudiana* for the consumer. This study resulted to cost-effective research strategy for *S. rebaudiana*.

ACKNOWLEDGEMENT

I would like to reflect on the people who have supported and helped me so much throughout this period. Firstly, I would like to express my gratitude to my supervisor Dr. Nor Azma binti Yusuf as she is always there whenever I ran into a trouble spot or had a question about my research or writing. She consistently allowed this thesis to be my own work but steered me in the right direction whenever she thought I needed it. Besides, my co-supervisor Prof. Madya Dr Asmah binti Awal who also help in a way to complete my master's degree. Not to be forgotten, I would like to thank my former supervisor Prof. Dr. Mohamad bin Osman that previously guided me in deciding the research title and consulted me for the method involved.

In addition, I am grateful to the Faculty of Plantation and Agriculture lecturers in UiTM Shah Alam and Jasin that directly or indirectly in helping me throughout completing my master's degree study. I would also like to thank the laboratory assistant in UiTM Puncak Alam and UiTM Jasin who provided the assistance in completing my experiment by preparing the apparatus and equipment in the laboratory.

Besides, I want to thank my friends that provide a help in sharing their thought and idea to improve my research study. Last but not least, I would also like to thank my parents for the vision and determination to educate me. There will be no end for me to thank them for their kindness and cares. This piece of victory is dedicated to both of them.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF PLATES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xv

CHAPTER ONE: INTRODUCTION

1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Objectives	4
1.4 Significance of Study	4

CHAPTER TWO: LITERATURE REVIEW

2.1 <i>Stevia rebaudiana</i> (Bert.) Bertoni	5
2.1.1 Botanical Description	5
2.1.2 Application of <i>S. rebaudiana</i>	6
2.1.2.1 Natural Sweetener	7
2.1.2.2 Medicinal Values of <i>S. rebaudiana</i>	8
2.2 Steviol Glycosides	10
2.2.1 Biosynthetic Pathways	12
2.2.2 Stevioside (Sv)	12

CHAPTER ONE

INTRODUCTION

Background of Study

Stevia rebaudiana (Bertoni) is the only sweet stevia plant among 150 of stevia species. *S. rebaudiana* has been widely used in Japan, China, Russia, USA and the UK for food and beverage preparations. This plant which act as a natural sweetener is also well known as sugar, candy and sweet leaf due to its sweet taste that estimate 300 times sweeter than cane sugar (Balaswamy, Rao, Nagender, & Satyanarayana, 2014). There are eleven sweet chemical constituents of the plant such as stevioside (sv), rebaudiosides (reb) and dulcosides. Sv and reb A are the most widely studied among the sweet compounds of plant origin (Hawke, 2003).

A number of researchers have reported that *S. rebaudiana* is beneficial for humankind in the aspect of health due to its low-calorie properties (Kobus-Moryson & Gramza-Michałowska, 2015). Atteh et al. 2008 reported that regular consumption of steviol glycosides regularly leads to glucose and cholesterol level reductions. (Atteh, Onagbesan, Tona, Decuypere, Geuns, & Buyse 2008). The demand for low calorific intense sweeteners is growing not only because of sugar related health problem but also due to rising number of diabetic patients. Malaysia was reported by the International Diabetes Federation (IDF) as one of the 21 countries and territories of the IDF Western Pacific region. In the year 2015, 3.3 million cases of diabetes were recorded in Malaysia from the total population which was 31.2 million (Pacific, 2015; Statistics, 2016). Therefore, stevia is the best choice to fulfil the needs of consumers, not only combining the qualities of a sweetener, but also constituting a source of many substances with a nutritional effect on the human metabolism (Kobus-Moryson & Gramza-Michałowska, 2015). Due to the demand of low calorific sweeteners, this study was conducted with the interest to investigate *S. rebaudiana* in the aspect of its extraction process, analysis and sensory evaluation technique.

Optimisation of parameters concerning to the extraction yield which are immersion temperature, particle size and immersion duration were studied using response surface methodology (RSM). It involved the reduction in the number of