UNIVERSITI TEKNOLOGI MARA

THE EXTRACTION OF STERCULIACEAE SPECIES

FATHIN NURIZATI BINTI SAMSUL

BACHELOR OF PHARMACY (Hons)

ACKNOWLEDGEMENT

All praises to Allah Almighty for the strengths and His blessing in completing this thesis. The research objectives for this project are accomplished with the support and encouragement of numerous people. I would therefore like to offer my sincere thanks to all of them.

Special appreciation goes to my supervisor, Dr. Hannis Fadzillah bt. Mohsin for her continuous supervision, for her support and knowledge regarding this topic and correction of the thesis. Not forgotten, my co-supervisor, Dr. Ibtisam bt. Abdul Wahab for suggesting the title of this thesis, giving advice and especially for her encouragement and guidance during the writing process.

I take this opportunity to extend warm thanks to my parents for their material and spiritual support in my life. Their great support and prayers have enabled me to reach the present position in my life. I also would like to thank my brother and sister, seniors, post graduate students, my friends and everyone whom directly or indirectly contributed to this project. I can just say thanks for everything they shared with me and may Allah give them all the best in return.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
ABSTRACT	ix
CHAPTER ONE: INTRODUCTION	1
1.1 An introduction to Sterculiaceae family and malva nuts	2
1.2 Objectives	4
1.3 Problem statement	4
1.4 Hypothesis	5
1.5 Significance of study	5
1.6 Scope	5
1.7 Limitation of research	6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 The family: Sterculiaceae	7
2.2 Different characteristics of malva nuts	8
2.2.1 Scaphium genus	8
2.2.2 Sterculia lychnophora Hance	9
2.3 Biological activity of Sterculiaceae	12
2.3.1 Antioxidative effect	12
2.3.2 Antiulcer effect	13
2.3.3 Reduction of body weight	14
2.4 Phytochemistry of Sterculiaceae family	17
2.4.1 Sterculinine I and Sterculinine II	17
2.4.2 Malayscaphiol, Lupeol, Lupenone and Stigmasterol	19
2.4.3 Monosaccharides and polysaccharides found in Sterculiaceae	20
2.5 Sterculiaceae in various research area	21
2.5.1 Physical chemistry and colloid research	21
2.5.2 Nutrition of malva nut seeds	23

ABSTRACT

This study introduces the Sterculiaceae family, which consists of seventy genera, including Scaphium and Sterculia species. They are called as malva nuts that are used as remedy against pharyngitis, tussis and constipation. Malva nuts are utilized in Thai traditional medicine as a cooling agent to treat fever, coughing and sore throats. From the review, Sterculiaceae species are reported as antioxidative, antiulcer and can help to reduce the body weight. Nevertheless, only few studies were done on the extracts and compounds. Researchers are more likely to focus on the root, bark and leaf extracts, since those plant parts exhibit a broad range of medicinal properties. Thus, there is not much research on the seed extraction. In addition, Scaphium seeds contain large amount of mucilaginous substances. Many journals discuss on the extraction of the major monosaccharide from the species. However, other chemical constituents and biological uses of the seeds are still unknown. In contrast, Sterculia lychnophora was extensively investigated in terms of the phytochemistry and pharmacology. Hence, there is a need for comparing the Sterculiaceae seeds, based on the literature search. Therefore, the aim of this study is to investigate the phytochemical constituents in the malva nuts' seeds extracts. Thin Layer Chromatography (TLC) analysis was performed and the ideal TLC solvent sytem for chloroform extract was hexane and ethyl acetate (7:1). Phytochemical analysis of the extracts revealed the presence of secondary metabolites such as alkaloid, phenols and saponins. The presence of alkaloid could support a study that previously isolated such constituents. The chloroform extract was purified by compound was further preparative thin layer chromatography (PTLC). The elucidated by Nuclear Magnetic Resonance (NMR). The NMR spectrum analysis suggested the isolated substance was a mixture of both an aromatic aldehyde (δ_H 7 -10 ppm) and a fatty acid methyl ester (FAME) ($\delta_H \, 0 \, - \, 5.5$ ppm). Future work is encouraged to reinvestigate the extract in order to increase the amount of purified compounds. Finally, it is hoped that this study could increase the knowledge on the phytochemistry of the Sterculiaceae family, which then could be added as the line of today's drug.

CHAPTER ONE

INTRODUCTION

Medicinal plants are referred to natural products that can provide health benefit for most of the world's population. Scientists over the decades have discovered the importance of these plants as the sources of new therapeutic agents. About 3.4 billion people in the growing countries still rely on the plants as their source of medicines (Hamuel, 2012).

According to the World Health Organization (WHO), one or more parts of the medicinal plant such as the roots, rhizomes, stems, barks, flowers, fruits or seeds contain substances that can be used for therapeutic purposes. All the phytochemicals that could be found from those parts of the plant have important properties to prevent or fight some common diseases (Saxena *et al.*, 2013).

There are many studies have been done on the distribution of medicinal plants in a specific area of country. For example, a total of 98 plants species with 140 different uses were recorded from a study on the use of medicinal plant species by the indigenous people from the Temuan tribe at Ayer Hitam Forest, Selangor, Peninsular Malaysia. The use of the plants were recorded and they were classified into seven methods of applications such as drink, eat, chew, poultice, rub, bath and shampoo (Ibrahim & Hamzah, 1999).

Basically, the scientific knowledge about the medicinal plants helps researchers to conduct a study in order to explore the benefits, efficacy and quality controls of the plants.