UNIVERSITI TEKNOLOGI MARA

PREDICTION OF DISSOLUTION BEHAVIOUR OF FUMARIC ACID (FORM B) USING MOLECULAR MODELLING

AMINATUZZAHARAH BINTI MUSA

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor of Engineering (Hons.) Chemical**

Faculty of Chemical Engineering

July 2019

ABSTRACT

Fumaric acid is one of stable co-former used in active pharmaceutical ingredient (APIs) drug in pharmaceutical industries. As APIs drug is known for having limited dissolution bioavailability and low solubility in water, so, one method is approach which is pharmaceutical co-crystal. Pharmaceutical co-crystal is defined as a crystalline material which consists of an API and one co-former. Basically, the aim of this research is to assess the effect of number of molecules of solvent to the dissolution of Fumaric Acid (Form B) crystal by using molecular modelling. Molecular dynamic simulation is used since the visual on how the diffusion of FUM-B into ethanol solvent can be seen. The dissolution behavior of FUM-B into ethanol solvent is determined by using mean square displacement (MSD) and diffusion coefficient (D) calculations. The results shows that the dissolution of crystal first occur at facet (0 0 1) and last dissolution occur at facet (1 -3 1) with D value of 3.866x10-9 and 2.1x10-11 respectively. The higher the value of D indicates that the faster crystal can diffuse into solvent. Facet (1 -3 1) has slow dissolution behavior because it has strong hydrogen bond interaction between crystal molecules compared to other facet. The data from simulation also analyzed by using radial distribution (RDF), the result shows as same as MSD result.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my degree and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr. Siti Nurul 'Ain binti Yusop.

My appreciation goes to Dr. Nornizar binti Anuar and Mr. Muhammad Fitri bin Othman for your guidance and knowledge that contributed to completing this project. Special thanks to my team members and friends for helping me with this project.

Finally, this thesis is dedicated to my mother and late father for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

TABLE OF CONTENT

			Page				
CONFIRMATION BY PANEL OF EXAMINERS			ii				
AUTHOR'S DECLARATION			iii				
SUPERVISOR'S DECLARATION			iv				
COORDINATOR'S DECLARATION			v				
ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENT			vii viii ix				
				LIST	Γ OF TA	ABLES	xi
				LIST OF FIGURES			xii
LIST OF ABBREVIATIONS			xiii				
CHA	APTER (ONE INTRODUCTION	1				
1.1	Introd	luction	1				
1.2	Resea	rch Background	1				
1.3	Proble	em Statement	3				
1.4	Objectives		4				
1.5	Signif	Ficance of Study	4				
CHA	APTER T	ΓWO LITERATURE REVIEW	6				
2.1	Introd	luction	6				
2.2	Solid forms of Active pharmaceutical ingredients (APIs)		6				
	2.2.1	Polymorphs	7				
	2.2.2	Amorphous solid	8				
	2.2.3	Co-crystal	9				
	2.2.4	Pseudo polymorphs (solvates and hydrates)	10				
	2.2.5	Salts	10				
2.3	Solubility and Dissolution Study		11				

CHAPTER ONE INTRODUCTION

1.1 1.1 Introduction

This chapter discussed about the research background of fumaric acid and pharmaceuticals including the definition of the fumaric acid, where it comes from, it applications and how does it related with the pharmaceuticals and dissolutions. Besides, it also discussed about the problems on why fumaric acid is choose as a co-former and why molecular dynamic simulation been used in this research.

1.2 Research Background

Fumaric acid is defined as a colorless crystalline chemical compound which is widely found in nature. It was first found in a plant of Fumaria officinalis in which it derived it is Fumaric acid's name. Fumaric acid, also known as trans-1, 2-ethylenedicarboxylic acid or (E)-2 butenedioic acid, is widely used in the manufacture of drinks, medicines, food and beverage additives, unsaturated polyester, animal feed, alkyd resins, cleansing agents, printing inks, and plasticizer (A. Roa Engel, Straathof, W Zijlmans, Gulik, & Wielen, 2008). Currently, Fumaric acid is produced from maleic anhydride by maleic acid isomerization process. Below, show the reaction equation of oxidation of butane to produce maleic anhydride.

$$C_4H_{10}(g) + 3.5O_2(g) \rightarrow C_4H_2O_3(g) + 4H_2O(g)$$

In the pharmaceutical industry, to increase the dissolution rate and solubility of co-crystal in the solvent, fumaric acid is used as a co-former in co-crystallization process. In previous studies, since 1959, fumaric acid esters (FAE) have been utilized in the psoriasis treatment, and it is known as fumarates, as its name is a fumaric acid ester, an ester is derived from fumaric acid. Although FAE is unlicensed in the UK due to the efficacy and safety, it was licensed in Germany. FAE tablets are used to treat