UNIVERSITI TEKNOLOGI MARA

CHARACTERIZATION OF FLUORINE UPON IMPLANT SEQUENCE ON P-METAL OXIDE SEMICONDUCTOR (PMOS) AND P+/N-JUNCTION SCHOTTKY DIODE IN BICMOS TECHNOLOGY

SITI ZUBAIDAH MD SAAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

October 2014

ABSTRACT

Fluorine (F) is known as a reactive species that capable to form a variety of complex defects. It beneficial effect as well as the detrimental effect to the electrical and physical characterization of devices have been studied by many researchers. The effect of F to the electrical results such as resistance and leakage current has created controversy discussions among researchers. F used as the co-implantation of boron (B) was found to reduce the resistance and leakage current but some researchers revealed an opposite findings. Due to this, it is crucial to understand the phenomenon behind these controversies. This study was done on BiCMOS product. BiCMOS is the integration of CMOS and Bipolar devices. In this work, we study the effect of F coimplant with BF2 as well as F with B by varying the dose and implant energy in the p+-region of p+/n-junction Schottky diode and PMOS as these are the basic and important devices in the BiCMOS technology. Besides that, the most important condition in this experiment was the implant sequence of boron fluoride (BF2) and F co-implant. Instead of implanting F followed by BF2 (F-BF2 sequence), we have reversed the implant sequence to BF2 followed by F (BF2-F sequence). We found that for the same dose and implant energy of F co-implant and BF2, the leakage current of p+/n-junction was improved by one decade in BF₂-F sequence. Further variation of dose and implant energy had shown that implant sequence affected the electrical characterization such as leakage current, breakdown voltage and resistance in p+/njunction. As implant sequence changes, the pre-amorphization layer will be different according to the dopant, dose and implant energy. These will significantly affect the subsequent implant profile and depth. By implanting B and F as close as possible helps to reduce the leakage current as F acts as a sinker for the defects from End-of-Range (EOR) region to get into the B doped region. While in PMOS, very minor effect of BF2 dose and implant energy variation upon implant sequence to the SiO2 electrical thickness and capacitance were seen as well as to the Negative Bias Temperature Instability (NBTI) degradation except for F variation effect. With these understandings, integrated circuit (IC) design engineer is able to define the optimum implant conditions in order to get the desired electrical results such as low leakage current, high breakdown voltage and low NBTI degradation.

TABLE OF CONTENTS

	9	Page		
AUTHOR'S DECLARATION				
ABSTRACT				
ACI	KNOWLEDGEMENTS	iv		
TABLE OF CONTENTS				
LIST OF TABLES				
LIST OF FIGURES				
LIST OF ABBREVIATIONS				
CHA	APTER ONE: INTRODUCTION			
1.1	Motivation	1		
1.2	Problem Statement	2		
1.3	Objective	3		
1.4	Scope and Limitation			
1.5	Significance of Study	5		
1.6	Thesis Outline	5		
CH	APTER TWO: LITERATURE STUDY			
2.1	Introduction	6		
2.2	Ion Implantation	6		
	2.2.1 Introduction	6		
	2.2.2 Impurity Implantation	7		
	2.2.3 Ion Implantation Damage and Defects	9		
2.3	BiCMOS Device	13		
	2.3.1 Introduction	13		
	2.3.2 <i>pn</i> -junction	14		
	2.3.3 Metal-semiconductor Contact	18		
	2.3.4 PMOS	19		
2.4	Device Parameters	21		
	2.4.1 Leakage Current	21		

		2.4.1.1 Temperature effect	23
	2.4.2	Breakdown Voltage	25
	2.4.3	Resistance	26
	2.4.4	Negative Bias Temperature Stability (NBTI)	29
	2.4.5	Capacitance & Thickness	30
CHA	PTER	THREE: RESEARCH METHODOLOGY	
3.1	Introd	luction	33
3.2	Devic	e Fabrication	35
	3.2.1	p+/n-junction Schottky Diode Fabrication	35
	3.2.2	PMOS Fabrication	36
	3.2.3	Parameters of F and BF ₂ Implantation	37
3.3	Devic	e Characterization Methods	38
	3.3.1	Electrical Characterization	38
	(a)	Schottky diode and p+/n-junction	38
	(b)	PMOS	39
	3.3.2	Physical Characterization	42
	(a)	Secondary Ion Mass Spectroscopy (SIMS)	42
	(b)	Transmission Electron Microscopy (TEM)	42
3.4	Sumn	nary	42
CHA	PTER I	FOUR: EFFECT OF IMPLANT SEQUENCE TO	
		DEVICE CHARACTERISTICS	
4.1	Introd	uction	44
4.2	Exper	imental Methods	44
4.3	Resul	ts & Discussions	45
	4.3.1	Physical Characterization	45
	(a)	SIMS Analysis	45
	(b)	TEM Analysis	47
	4.3.2	Electrical Characterization at Room Temperature	48
	4.3.3	Temperature Dependence Electrical Characterization	50
44	Summ	narv	52

CHAPTER FIVE: EFFECT OF IMPLANT DOSE TO DEVICE CHARACTERISTICS

5.1	Introd	oduction		
5.2	Exper	imental Methods		
5.3	Result	ts & Discussions	56	
	5.3.1	Effect of F Dose	56	
	(a)	Electrical Characterization of Schottky diode and $p+/n$ -junction	56	
	(b)	Electrical Characterization of PMOS	63	
	5.3.2	Effect of BF ₂ Dose	65	
	(a)	Electrical Characterization of Schottky diode and $p+/n$ -junction	65	
	(b)	Electrical Characterization of PMOS	72	
5.4	Summ	nary	74	
CHA	APTER S	SIX: EFFECT OF IMPLANT ENERGY TO DEVICE		
		CHARACTERISTICS		
6.1	Introdu	ction	77	
6.2	Experin	nental Methods	77	
6.3	Results & Discussions			
	6.3.1	Effect of BF ₂ implant energy	80	
	(a)	Electrical Characterization of Schottky diode and $p+/n$ -junction	80	
	(b)	Electrical Characterization of PMOS	87	
	6.3.2	Effect of F implant energy	89	
	(a)	Electrical Characterization of Schottky diode and $p+/n$ -junction	89	
	(b)	Electrical Characterization of PMOS	96	
	6.3.3	Effect of B over BF2 and B implant energy	98	
	(a)	Electrical Characterization of Schottky diode and $p+/n$ -junction	98	
	(b)	Electrical Characterization of PMOS	103	
6.4	Summa	ry	105	