UNIVERSITI TEKNOLOGI MARA

OPTIMIZATION OF NANOPAPER PREPARATION FROM TROPICAL PIONEER SPECIES

AHMAD HAZWAN BIN AZHARI

Thesis submitted in fulfillment of the requirements for the degree of Bachelor Eng. (Hons)

Faculty of Chemical Engineering

July 2017

ABSTRACT

This study shows about optimization of nanopaper preparation from tropical pioneer species in Peninsular Malaysia like Mahang wood which by adding nanocrystalline cellulose (NCC) into paper. Nanotechnology developments in areas of fiber science, minerals and other additives will give papermakers the means to put order and structure into the designs of a sheet (Innova, 2004). NCC has the capability of turning into an imperative class of renewable nanomaterials, which could discover numerous helpful applications. The main application of NCC is for the reinforcement of polymeric matrix in nanocomposite materials (Peng, Dhar, Liu, & Tam, 2011). Besides that, NCC can improves barrier properties in nanocomposite. Furthermore, the addition of NCC in papermaking process has been identified as a method to improve physical and mechanical properties of paper, however there is a possibility that some of the NCC added are lost in the whitewater due to its small size. This results in significant property improvement. Hence, there is a need to identify the optimum papermaking process protocol which retains most of the NCC to be effective as an additive. The desired structure obtained in the study is NCC with average length of the NCC is 514.9nm and the hydrolysis yield is 12.06%. The optimum pH for grafted NCC is ph11. There are six samples of grafted NCC nanopaper with different concentrations, 0%, 0%, 1%, 2.5%, 5%, and 10% respectively. The tensile strength of Sample 1, 2, and 3 is decrease linearly, 1.64kN/m, 1.52kN/m, 1.424kN/m then the tensile strength of Sample 4, 5, 6 is increase linearly, 1.744kN/m, 2.072kN/m, 2.44kN/m.

ACKNOWLEDGEMENT

First and foremost praise to Allah SWT and also peace be upon Nabi Muhammad SAW as messenger of Allah. Thanks to Allah as He allowed me to complete my final year project successfully. The project has been both a challenge and an experience to cherish for a life time. Although a lot of hard work and sacrifice did come from my part, the project would not even lifted off the ground if no help from people surrounding. In this opportunity, I would like to acknowledge several person that was very important in completing the project.

Special thanks to my supervisor, Madam Syazana Mohd Pauzi and Universiti Teknologi Mara for guiding me to conduct the final year research project. Thanks also to my co-supervisor, Dr. Sharmiza Adnan for letting me doing this research in FRIM and gives faith on me for assigned the project. Besides that, not forget to the FRIM Pulp and Paper staff, Dr. Latifah Jasmani, Dr. Rushdan Ibrahim, Mrs. Muzalina Muhammad, Mr. Fazrul Samsudin, Mr. Azizi Abd Jalil, Mr. Syukri Said, Mrs. Hamsinah Hashin, and my fellow friends that supporting me from the start of this project until complete successfully.

Last but not least, I would also like to thank to my both parents, Mr. Azhari Naim and for providing me a light in the darkness by pray for me and gave some financial support during the research.

		Page
AUTHOR'S DECLARATION		ii
ABSTRACT		iii
ACK	NOWLEDGEMENT	iv
TAB	LE OF CONTENTS	vi
LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS		vii
		viii
		ix
		X
CHA	PTER ONE: INTRODUCTION	
1.1	Research Background	1
1.2	Problem Statement	1
1.3	Objectives	2
1.4	Scope of Research	2
СНА	PTER TWO: LITERATURE REVIEW	
2.1	Mahang	3
2.2	Cellulose	3
2.3	Nanocellulose	4
	2.3.1 Nanocrystalline cellulose	4
2.4	Enzymatic Hydrolysis	5
2.5	Fluorescent Grafting	5
2.6	TAPPI Methods	6
СНА	PTER THREE: RESEARCH METHODOLOGY	
3.1	Raw Materials	8
3.2	Methodology	8

CHAPTER 1

INTRODUCTION

1.1 Research Background

Nanotechnology is a rising territory of science and technology that will revolutionize use in the 21st century. The moderately unrefined and unsophisticated technology on which we presently depend will be replaced with very productive and environmentally friendly nanotechnologies (Wegner & Jones, 2009). The finding of novel materials, procedures, and phenomena at the nanoscale and the development of new experimental and theoretical techniques for research give crisp chances to the improvement of creative nanosystems and nanostructured materials (Bharat, 2010).

The papermaking application of employing nanoparticle systems has evolved to become more of a "properties" management system during papermaking, and beyond the mill at converting operations and printers. Nanotechnology developments in areas of fiber science, minerals and other additives will give papermakers the means to put order and structure into the designs of a sheet (Innova, 2004). NCC has the capability of turning into an imperative class of renewable nanomaterials, which could discover numerous helpful applications. The main application of NCC is for the reinforcement of polymeric matrix in nanocomposite materials (Peng, Dhar, Liu, & Tam, 2011). Besides that, NCC can improves barrier properties in nanocomposite. In particular, food packaging materials require both mechanical strength and barrier for such molecules as gases (mainly oxygen), moisture migration, flavour and aroma control. Barrier property investigations of NCC-improved materials have mainly focused on water vapour transmission and oxygen permeability (Brinchi, Cotana, Fortunati, & Kenny, 2013).

1.2 Objective

- a) To identify optimum papermaking protocol for nanocellulose retention.
- b) To identify property improvement in paper containing nanocellulose.