PHOTOBIODEGRADATION OF REACTIVE BLACK 5 USING MIXED MICROBIAL CULTURE AND N-S-TiO2 UNDER VISIBLE LIGHT

AINUL JAMILAH BINTI AZMAN

BACHELOR OF ENGINEERING (Hons)

CHEMICAL AND BIOPROCESS

FACULTY OF CHEMICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA

JULY 2016

Abstract

The photobiodegradation of reactive black five (RB5) by using N-S-TiO2 and mixed cultured under visible light was studied. The effect of several parameters such as dopant concentration, catalyst loading, inoculum size and initial concentration of RB5 were investigated. To study the kinetic of degradation, Langmuir-Hinshelwood mechanism was used for photodegradation meanwhile, for biodegradation, Monod equation was used. Thus, the rate of degradation was measured by using spectrophotometer. Two experiments with the purpose to study the kinetics of photodegradation were conducted by using parameters such as dopant concentration and catalyst loading. Optimum dopant concentration recorded was 0.75 % meanwhile, optimum catalyst loading was 1 g/L. biodegradation experiment shows the optimum inoculum size recorded was 5 mL. Based on combine photodegradation study, the rate of degradation of RB5 was faster compare to photodegradation and biodegradation.

CONTENT

CON'	TENT i
LIST	OF TABLESii
LIST	OF FIGURESii
NOT	ATIONS iii
ABST	TRACT iv
Chap	ter 1: Introduction
1.1	Dyes classification
1.2	Effect of azo dyes to the environmental and living things 3
1.3	Problem statement
1.4	Objectives 5
1.5	Scope of research
1.6	Conclusions
Chap	ter 2: Literature review
2.1	Definition of dyeing
2.2	Dyeing techniques9
2.3	Theory of photocatalytic process
2.4	Synthesis of reactive black 5
2.5	Reaction of reactive black 5
2.6	Photocatalysis of reactive black 5
2.7	Kinetics study of doping TiO ₂ catalyst
2.8	Dyes techniques removal
2.9	Possible enzyme within waste water effluent
2.10	textile-dye degradation systems
Chap	ter 3: Research methodology
3.1	Photodegradation of RB524
3.2	Biodegradation of RB5
3.2	Photo-biodegradation of RB526

Chapt	er 4: Results and discussions
4.1	Photocatalytic activity of RB5
4.2	Photocatalytic degradation of RB5
27	
4.3	Biodegradation of RB5
29	
4.4	Photo-biodegradation of RB5
32	
Chapt	er 5: Conclusions
34	
Refere	ence

CHAPTER 1

INTRODUCTION

1.1 Dyes classification

A dye can be classified as colour substance that has affinity when it is apply to the substrate. Generally, the dye applied in the liquid form where high technology may be used to improve the effectiveness and give the high performance of the specific dye. A mordant term used widely in the dye industry which can be define as materials or reagents that used to set and fixed specific dyes to cells, tissues, textile or materials by forming coordination complex between both of them. Dyes can be classified according to their nature and all of them can be categorized into 20 groups based on the chemical structure.

	Group	Uses
Category:	Acridine dyes, derivatives of acridine >C=N-and>C=C	Textiles, leather
Category:	Anthraquinone dyes, derivatives of anthraquinone >C=O and>C=C	Textiles
Category:	Arylmethane dyes Diarylmethane dyes, based on diphenyl methane Triarylmethane dyes, based on triphenyl methane	
Category:	Azo dyes, based on a -N=N- azo structure	
Category:	Cyanine dyes, derivatives of phthalocyanine	
Category:	Diazonium dyes, based on diazonium salts	
Category:	Nitro dyes, based on the -NO2 nitro functional group	
Category:	Nitroso dyes, are based on a -N=O nitroso functional	
Category:	Phthalocyanine dyes, derivatives of phthalocyanine >C=N	Paper
Category:	Quinone-imine dyes, derivatives of quinone	Wool and paper
Category:	Azin dyes Eurhodin dyes Safranin dyes, derivatives of safranin -C-N=CC-N-C	Leather and textile
Category:	Xanthene dyes, derived from xanthene -O-C6H4-0	Cotton, Silk and Wool
Category:	Indophenol dyes, derivatives of indophenol >C=N-and>C=O	Color photography
Category:	Oxazin dyes, derivatives of oxazin -C-N=C =C-O-C=	Calico printing
Category:	Oxazone dyes, derivatives of oxazone	
Category:	Thiazin dyes, derivatives of thiazin	
Category:	Thiazole dyes, derivatives of thiazole >C=N-and-S-0=	Intermediate
Category:	Fluorene dyes, derivatives of fluorene	
Category:	Rhodamine dyes, derivatives of rhodamine	
Category:	Pyronin dyes	

Figure 1.1.1 Classifications of dyes (source: [http://www.dyes-pigments.com])