PREPARATION OF HYBRID CuO/TiO₂ PHOTOCATALYST RESPONSIVE TOWARDS UV-LIGHT (EFFECT OF COPPER CONCENTRATION)

NUR AIFAA BINTI AZMAN

This report is submitted in partial fulfillment of the requirement needed for the award of Bachelor in Chemical Engineering (Hons)

FACULTY OF CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

JULY 2017

ACKNOWLEDGEMENT

Alhamdulillah, all praises to almighty Allah who has made it possible for me to complete my thesis within 14 weeks working it.

First of all, thanks to Faculty of Chemical Engineering and Faculty of Applied Science for the permission for me to run the project and provide the full facilities and kind assistance.

Next, I would like to express my gratitude to my lovely supervisor, Dr Lim Ying Pei for her support, ideas and spending her time in guiding me from the very start until this thesis has been completed without any complain. I would also like to say my big thank to my co-supervisor, Dr Lim Ying Chin. Both of them play a big role as motivator for me to complete this thesis.

Then, I would like to dedicate my thankfulness to my beloved family and friends who has given the best moral support in number of ways to me to finish this project. They are the best companion for me to encourage me having patience and never give up when crossing through the difficulty along this journey.

Last but not least, I offer my regards to all of those who supported me in any aspect during the completion of this project

ABSTRACT

Titanium dioxide (TiO₂) is often used in wastewater treatment plant. However, the photocatalytic activity is limited due to the degradation of dye using TiO₂ only occur in UV range. Therefore, to enhance the performance of photocatalytic activity, doping TiO₂ with metal will enhance the degradation activity under UV and visible light. The objectives of this research is to prepare hybrid CuO/TiO₂ using wet impregnation method by varying copper concentration, to characterize the photocatalyst using XRD, EDX, FESEM and BET and to evaluate the photocatalytic removal of methyl orange by hybrid CuO/TiO₂ photocatalyst. To investigate the removal efficiency of methyl orange by using hybrid CuO/TiO2, the copper concentration was varied from 0.3 wt%, to 1.0 wt% at 90 °C incubation temperature and 2 hours incubation time. From XRD result, the present of copper cannot be detected because the copper concentration is too low (<1 wt%), only titanium and oxygen element was detected. In the other analyser, EDX, the present of copper element was detected along with titanium and oxygen element. The mappings of the elements were shown by EDX and FESEM images. A homogenous distribution of copper on titanium dioxide surface was observed. As for BET, it shows the surface area, pores width and pores volume of the Cu doped TiO₂ photocatalyst were 9.17 m2/g 7.86 m2/g and 0.04 cm3/g. The photodegradation results showed that 0.5 wt% CuO/TiO₂ performance was the highest with 46% removal of methyl orange. The kinetic data studies were fitted into pseudo-first, pseudo-second and intraparticle diffusion model. The kinetic of adsorption model was found to follow pseudo-first order model as the highest regression value at 0.5 wt% copper loading was 91%.

TABLE OF CONTENTS

			PAGE
AUTHOR'S DECLARATION			ii
SUPERVISOR'S CERTIFICATION			iii
ACKNOWLEDGEMENT			v
ABSTRACT			vi
TABLE OF CONTENTS			vii
LIST OF TABLES			X
LIST OF FIGURES			xi
LIST OF ABBRI	EVIATIC	ONS	xii
CHAPTER 1	INTI	INTRODUCTION	
	1.1	Research Background	1
	1.2	Problem Statement	3
	1.3	Objectives of Research	3
	1.4	Scopes of Research	4
CHAPTER 2	LITI	ERATURE REVIEW	
	2.1	Photocatalysis	5
		2.1.1 Semiconductor photocatalyst	5
		2.1.2 Modification of TiO ₂	6
	2.2	Preparation of hybrid CuO/ TiO ₂ photocatalyst	7
		2.2.1 Wet impregnation	7
		2.2.2 Sol-gel	8
	2.3	Parameter affecting the efficiency of the doped	
		photocatalyst	9
	2.4	Characterization of photocatalyst sample	11
		2.4.1 X-Ray diffraction (XRD)	12
		2.4.2 Energy Dispersive X-ray Spectroscopy (E	EDX) 13
		2.4.3 Field Emission Scanning Electron	
		Microscope (FESEM)	14
		2.4.4 Brunauer-Emmet-Teller (BET) Analyzer	16

CHAPTER 1

INTRODUCTION

1.1 RESEARCH BACKGROUND

In textile industries, the major problem faced was on the wastewater sources in corresponding to the high level of dye stuff waste and floating solid materials. Wastewaters generated by the textile industries are known to contain significant amounts of non-fixed dyes, especially azo-dyes, and a huge amount of inorganic salts. According to Pirkarami and Olya (2014), about 5000 tons of dye material waste was discharge by the factory to the environment every year. The oxygen in water was absorbed by the toxic material from the discharge and threatens human life and ecosystem.

From the total production of dye in the world, more than 15% of it contributes to orange ll azo-dyes that has been used in textile manufacturing industries (Riaz et al., 2012). Orange ll is resistance to light degradation and it does not undergo biological degradation. Although the stability of orange ll is very useful in textile industrial but it causes difficulty in handling its effluent.

There are several ways to treat the dye effluent from the industries. Firstly, the treatment is by physical technique such as coagulation, precipitation and membrane separation. Secondly, is by chemical treatment. The dye is break down into simpler