

DEPARTMENT OF BUILDING UNIVERSITI TEKNOLOGI MARA (PERAK)

METHOD STATEMENT FOR REINFORCED CONCRETE FRAME STRUCTURE OF RESIDENTIAL BUILDING

Prepared by:

MUHAMMAD AIMAN ZIHNI BIN MOHD SHAH

2017206602

ABSTRACT

One of the most commonly used contemporary construction products is reinforced concrete. By blending cement, sand, and aggregates with water, concrete is "artificial rock." Fresh concrete can be molded into almost any shape, which is an inherent advantage over other materials. Concrete became very common following the 19th century creation of Portland cement; its restricted resistance to stress, however, avoided its broad use in construction. Steel bars are integrated in concrete to resolve this deficiency in order to create a composite material called strengthened concrete. In the early 19th century, European technicians developed developments in contemporary reinforced concrete design and building exercise. Reinforced concrete is currently being used widely in a broad range of engineering applications.

Buildings consist of beams, columns, walls, floors, and roofs. Reinforced concrete is ideally suited for the construction of floor, roof slabs, columns and beams in residential and commercial structures. Reinforced concrete grid floors comprising beams and slabs are widely used for covering large areas like conference halls where column-free space is an essential requirement.

It proves to be cost-effective, durable, fireproof, and reliable construction material. The versatility of concrete is another crucial characteristic through which an architectural effect can be achieved that cannot be obtained using other construction materials.

Multistory reinforced concrete buildings are routinely adopted for both residential and office complexes.

ACKNOWLEDGEMENT

Alhamdullillah, praise to Allah, the Most Merciful, the Most Graceful.

I would like to express my heartfelt appreciation to the following set of incredible people for their guidance, advice and assistance throughout the teaching era. First of all, I would like to thank En Radzie Kastawi for giving me the chance to undertake my practice in his business of confidence. His professional group of En Fadzly Hisham, En Shah Abdullah, Pn Nurhafizah Ali, En Faizal, Cik Nazifah Hayani and En Zaki Hazwan allowed me to discover and improve my understanding, knowledge and feeling of real-time activities and the theory of structural, construction and civil works assessment. They also have a responsibility to streamline and evaluate my teaching. Also to the site staff in both Mohisma (M) Sdn Bhd, Shah Alam and Subang Parade, Subang who have expanded their collaboration and helped further improve my knowledge of building and site management processes, testing processes, site safety and business best practices. It's an honor for me to have the chance to' work' with you all.

I also want to thank ALL UiTM lecturers who instructed and nurtured me to become a stronger teacher and individual. I would also like to express my greatest gratitude to the lecturers directly engaged in my workout. To Dr. Hj. Hayroman bin Ahmad, Supervising Lecturer, Puan Nurhasyimah binti Ahmad Zamri, Visiting Lecturer, En Muhammad Naim bin Mahyuddin, Practical Training Coordinator and Dr. Dzulkarnaen bin Ismail, Programme Coordinator, I appreciate the time, commitment, motivation and thoughts that led to the effective completion of my practice, this study and the precious information gained over the past few semesters.

Last but not least, I would like to thank my beloved relatives for their years of sacrifice. Thank you very much.

CONTENTS		PAG	E NO
Acknowledge	mente		i
Acknowledgements Abstract			
			ii
Contents			iii
List of Tables			iv
List of Figures			V
CHAPTER	1.0	INTRODUCTION	
	1.1	Background and Scope of Study	2
	1.2	Objectives	3
	1.3	Methods of Study	8
CHAPTER	2.0	COMPANY BACKGROUND	
	2.1	Introduction of Company	11
	2.2	Company Profile	13
	2.3	Organization Chart	14
	2.4	List of Project	19
		2.4.1 Completed Projects	21
		2.4.2 Project in Progress	23
CHAPTER	3.0	CASE STUDY (BASED ON TOPIC OF THE R	EPORT)
	3.1	Introduction to Case Study	25
	3.2	Subtopic (Based on objective 1)	28
	3.3	Subtopic (Based on objective 2)	40
CHAPTER	4.0	CONCLUSION	
	4.1	Conclusion	49

REFERENCES

CHAPTER 1.0

INTRODUCTION

1.1 Background and Scope of Study

RC frames are made of horizontal elements (beams) and vertical elements (columns) connected by rigid joints. These buildings are casted monolithically — that is, to behave in parallel, beams and pillars are casted in a single procedure. RC frames provide strength by bending in beams and pillars to both gravitational and horizontal stresses. There are several subtypes of RC frame building: • RC frames with / without filling walls • RC frames with strengthened filling walls • Ductile RC frames with / without filling walls

Industrialized Building System (IBS) is a word used only in Malaysia by means of a building method that transferred, put and installed concrete parts in a plant or controlled setting, either off-site or on-site. IBS is also regarded as prefabricated or prefabricated building, Modern Construction Method (MMC) and off-site building. Malaysia's Construction Industry Development Board (CIDB) encourages the use of IBS as it will enhance building performance and productivity through numerous instruction, promotional programs and rewards.

The conditions and categories supplied by the CIDB have also been misinterpreted as a restricted scheme for building construction only, while IBS can also be understood as an strategy or method that enables the design to be less labor-oriented and quicker as well as satisfying performance concerns. The state rendered it mandatory to cover 70 percent of the IBS scheme in the building job for all public initiatives.