SOLUBILITY OF CARBON DIOXIDE IN IONIC LIQUIDS

ALYAANASUHA BINTI ABD RASID

FACULTY OF CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

2017

ACKNOWLEDGEMENT

First and above all, praise to Allah, the Almighty for giving me the strength to prepare this research paper. This thesis appears in its current with assistance and guidance of few peoples.

I would therefore like to sincerely thank to all of them. To PM.Dr Ruzitah binti Mohd Salleh, my research project supervisor, thanks for all the supports and guidance that you have given me. The knowledge that been shared, the time that you have spent to help me completing this research project, I am greatly thankful.

I would also like to express my deep thanks to Siti Nabihah Jamaludin, Master student that have spent her time for the insightful discussion, offering valuable advice, and support during this whole period.

Last but not least, thanks to all my friends and everyone that directly and indirectly helps me through completing this report.

Thank you.
Sincerely,
(Alyaanasuha binti Abd Rasid)

ABSTRACT

In this study, Carbon dioxide, (CO₂) absorption capacity in the mixture of 1-Butyl-1-Methylpyrrolidinium bis (trifluoromethylsulfonyl) imide with methanol, aqueous mixture of 2-methylpiperidine and aqueous 1-Butyl-3-Methylpyridinium tetrafluoroborat, [B3MPYR][BF4] was measured at constant temperature of 313K and at pressure range from 300-700psi. The concentration used for 1-Butyl-1-Methylpyrrolidinium bis (trifluoromethylsulfonyl) imide and methanol mixture were 80 wt% methanol (CH₃OH) + 20 wt% ionic liquid (IL) and 50 wt% CH₃OH + 50 wt% IL with total volume of 100ml. For another two ILs of the same concentration bmixed with water instead of methanol. In this work, it was found that in all the ionic liquids used increasing the pressure will increase the CO₂ loading which is consistent with the theory as well as the behavior of other type of ionic liquids that have been published. The effect of ionic liquids concentration on CO₂ loading shows different behaviour for the three ILs mixtures studied. Increasing the ILs concentration for 1-Butyl- 1-Methylpyyrolidinium bis(trifluoromethylsulfonyl) imide with methanol mixture increases the CO₂ loading, however it decreases at pressure above 700 psi. Aqueous 1-Butyl-3-Methylpyridinium tetrafluoroborat shows contradict behaviour where increasing the ILs concentration decreased the CO₂ loading but at higher pressure, greater than 550 psi, increasing the concentration will increase the CO₂ loading. For the aqueous 2-methylpiperidine the CO₂ loading increased as the IL concentration increases. The bulkiness of IL molecules and the ability of ionic liquid to capture CO₂ itself will effect the solubility of CO₂ in ionic liquids. In comparison of CO₂ loading between the ionic liquids, anion density of the ILs will affect the CO₂ loading in the ILs. The results show that CO₂ loading in the ionic liquids were

TABLE OF CONTENTS

TITLE PAGE			PAGE ii
AUTHOR'S DECLARATION			iii
SUPERVISOR'S DECLARATION ACKNOWLEDGEMENT ABSTRACT			iv v
			LISTOF TABLES
LIST OF FIGURES			x
LIST OF ABBREVIATIONS			xii
CHAPTER 1	INTRODUCTION		
	1.1	Background Research	1
	1.2	Problem Statement	4
	1.3	Objective of Research	5
	1.4	Scope of Research	5
	1.5	Significance of Research	5
CHAPTER 2	LITERATURE REVIEW		
	2.1	Carbon Dioxide Emission Trends	7
	2.2	Effect of Carbon Dioxide Emission	12
	2.3	Mitigating the Carbon Dioxide Release	15
	2.4	Review of CO ₂ Capture by Absorption in Ionic Liquid Based Solvent	21
	2.5	Physical and chemical properties of Ionic Liquids.	24

CHAPTER 1

INTRODUCTION

1.1. BACKGROUND OF RESEARCH

From years to years the amount of carbon dioxide, CO₂ release to the atmosphere is increasing. Based on "Trends in global CO₂ emissions: 2015 Report", the CO₂ emitted to the atmosphere was increasing annually by 4% on average of two years starting from 2012 to 2013. For 2014 and 2015 the CO₂ emission increased by only 0.5% and almost stalled. At the same time, the world's economy grew by 3% and this shown the relation between the growth in global CO₂ emissions and that in the economy. (Olivier, Janssens-Maenhout, Muntean, & Peters, 2015) For Malaysia, CO₂ emission trend shown gradually increase from 2010 onwards, with the CO₂ emission was 7.7 metric tons per capita and this value increased year by years.(Olivier et al., 2015)

Carbon dioxide is categorized as one of the main greenhouse gases. Increasing the greenhouse gases give a negative impact to the environment. CO₂ emission is release to the atmosphere by human activities. For natural sources CO₂ is removed in equal measures by other natural occurrences. The natural sources include photosynthesis in plants. But human activity is the main cause of increasing of CO₂ emission to the air. The main sources of CO₂ presence in the air from human activity come from the burning of fossil fuels for transportation or power generation, steel production, the production of petrochemicals, cement production, and natural gas purification.(Olivier et al., 2015) Recently, CO₂ concentration in the atmosphere has increased