UNIVERSITI TEKNOLOGI MARA

EFFECT OF FLOWRATE AND RESIDENCE TIME ON EFFICIENCY OF AMMONIA GAS REMOVAL

MUHAMMAD HAFIZUDDIN BIN ABDUL SAMAT

Thesis submitted in fulfilment of the requirements for the degree of Bachelor Eng. (Hons)

Faculty of Chemical Engineering

September 2018

ACKNOWLEDGEMENT

First and foremost, I would like to thank God Almighty for giving me the strength, knowledge, ability and opportunity to undertake this research study and to persevere and complete it satisfactorily. Without his blessings, this achievement would not have been possible.

I would like to give my appreciation to my final year project supervisor, Dr Safari Bin Zainal for her guidance, encouragements, critics and her time. He has been helpful throughout the research by giving advices and ideas to help me improving my final year project 1.

I would also like to thank my family and friend. They were always supporting me and encouraging me with their best wishes. They gave me the strength to go through the difficulties that I had face throughout finishing this final year project.

Last but not least, special thanks to laboratory technicians of Chemical Engineering Faculty who are very helpful and patient in order to fulfil my needs for the experimental information of this project

ABSTRACT

OF AMMONIA GAS REMOVAL

Ammonia gas is an alkali gas which can causes various effects towards living organisms if these strong alkali gases are release to the environment without treated properly. The objectives of this research are to study the effect of flowrate and residence time on efficiency of ammonia gas removal. An optimum flowrate of inlet gases and the residence time for the reaction which is absorption process are essential or very important in conducting the contaminant gases absorption process because it will affect the efficiency of the alkali gas removal or the percentage of the alkali gas that have been absorbed. In this research, the analysis was conducted to study the efficiency of the ammonia gas removal by using different flowrate and residence time. The relationship or effect of the flow rate and residence time is shows in the graph. In this research the flowrate that were used is 1ml/min, 2ml/min, 3ml/min, 4ml/min and 5ml/min and the residence time are varies 2min, 4min, 6min, 8min and 10min. The ammonia is transfer into the scrubber with contain 200ml each solution at every experiment respectively. Therefore, based on this research, the most optimal efficiency removal of NH₃ gas is by using 1ml/min at 2 minutes. Moreover, at 2 minutes until 10 minutes of residence time, this flowrate still produce above 75% of percentage recovery of NH₃ gas which is at the higher recovery of NH₃ gas compare to others flowrate.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	3
SUPERVISOR'S CERTIFICATION	4
ACKNOWLEDGEMENT	5
ABSTRACT	6
TABLE OF CONTENTS	7
LIST OF TABLES	8
LIST OF FIGURES	8
LIST OF SYMBOLS	9
LIST OF ABRREVIATIONS	9
CHAPTER 1	10
Introduction	10
1.1 BACKGROUND STUDY	10
1.2 PROBLEM STATEMENT	12
1.3 OBJECTIVES	13
1.4 SCOPE OF RESEARCH	13
References	14
Chapter 2	15
Literature Review	15
2.1 Overview of NH ₃	15
2.2 NH ₃ properties	16
2.3 Toxicity of NH ₃	17
2.4 Mass transfer	21
2.5 Wet Scrubber	23
2.6 Liquid Scrubbing	28
2.7 Effects of flowrate	28
2.8 Effects of residence time	29
References	30
Chapter 3	32
Research Methodology	32
3.0 Introduction	32
3.1 GC	32
3.2 Method Used	34

CHAPTER 1

Introduction

1.1 BACKGROUND STUDY

Ammonia or known as NH₃ is a compound of Nitrogen (N) and Hydrogen (H) with a characteristic pungent smell and a colourless gas. NH₃ is very toxic an also flammable is a commonly produced in industrial with value of LEL 15% [1]. China is the prime worldwide producer in 2014 with 176 million tonnes which is nearly one-third of total production followed by India, Russia and also the United States [2].

NH₃ exists naturally in humans and the atmosphere and it is utilized in industry and commerce. NH₃ is a precursor for organic compound and ester synthesis and also important for several biological processes. NH₃ is made in soil from microorganism processes such as decomposition of organic matter, as well as plants, animals and animal wastes.

Within the presence of wet such as high relative humidity, the NH₃ gas is lighter than the air and can rise. The vapours that are produced by liquefied anhydrous NH₃ gas are heavier than air which increase the chance of exposure from leaks to massive NH₃ refrigeration plant.

High-concentration NH₃ is employed as a producing process gas for the production of compound semiconductors, like gallium nitride, however harmful gas emitted from production devices needs to be removed to a level below the threshold limit value (TLV), the safe level for the human body, in thought of the work surroundings. [3]. The exposure of NH₃ gas will lead to irritating to the eyes, throat, and breathing passages. Everything from gentle irritation to destruction of the eye will occur depending on whether a spray or gas is involved. NH₃ penetrates the eye faster than other alkalis [4]. In terms of inhalation, NH₃ may cause nasopharyngeal and tracheal burns, bronchiolar and alveolar edema, and airway destruction resulting in respiratory distress or failure and NH₃'s odor threshold is sufficiently low to acutely provide adequate warning of its presence (odor threshold = 5 ppm; OSHA PEL = 50 ppm) [5]. There are a few methods to remove NH₃ gas. Figure 1.1 show the general scrubber system which is one of the methods used to remove NH₃ from the exhaust gas.