UNIVERSITI TEKNOLOGI MARA

PRESENT AND FUTURE OF THERMOPHILIC BIOLEACHING IN DEVELOPING COUNTRIES

NOR SHAHIRAH BINTI MAT SERAT

Degree of Chemical And Bioprocess Engineering

2016

ACKNOWLEDGEMENT

First and foremost, I wish to express my gratitude to God for giving me the opportunity to continue my degree and for His blesses enabling me to complete my research project within the time given and also for giving me strength, wisdom and patience to face difficulty completing this research.

My gratitude and thanks goes to my supervisor Dr. Jefri Jaafar. Thank you for the support, guidance, patience and ideas in assisting me with this research project. I also would like to express my gratitude to my comrade, Syafiin Bin Jumaidi, Wan Ahmad Haris and Nurfatin Amirah Binti Izhab for their guidance and help. Special thanks to my colleagues and friends for helping me with this project.

Finally, my appreciation and thanks to my beloved mother and my late father for the vision, determination to educate me, and for their hard work in raising me. This piece of victory is dedicated to both of you. Alhamdulillah.

ABSTRACT

The growing of population and development contribute to the increasing demand of metals. Thus, the mining industries plays important role in supplying to this needs. However, the difficulties in the process of obtaining metal become constraints and many strive to improve the mining technology. One of the important aspect are the recovery and extraction of metal from its metal ore. In order to improve this process, a technique known as bioleaching is introduced. As diversity of the microorganism has been raising interest of engineers, researchers and scientists, the idea to make use of microorganism into mining technology became possible. Thus, the microbial hydrometallurgy and mineral processing (bio-hydrometallurgy) of metal sulphides is currently well established technology. Studies shows that the overall rate of bioleaching increases when the operating temperature increases. The increases in operating temperature result in increasing value of the rate of chemical oxidation, thus increase the rate of bioleaching. Hence, there is growing interest in operating at a higher temperature to achieved higher leach rates and lower operational cost. This lead to the used of thermophilic microorganism in the bioleaching process. This research project further investigate the present and future of thermophilic bioleaching in developing countries.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	I
SUPERVISOR'S CERTIFICATION	II
ACKNOWLEDGEMENT	III
ABSTRACT	IV
LIST OF TABLE	VII
LIST OF FIGURES	VIII
CHAPTER 1: 1INTRODUCTION	1
1.1 BACKGROUND RESEARCH	1
1.1.1 History/Background of Bioleaching	1
1.1.2 Thermophilic Bioleaching Microorganism	2
1.2 PROBLEM STATEMENT	3
1.3 OBJECTIVE	3
1.4 SCOPE OF STUDY	4
CHAPTER 2 : DISCUSSION	5
2.1 LITERATURE REVIEW	5
2.1.1 History of Bioleaching	5
2.1.2 World Production of Copper, Gold, and Cobalt	6
2.1.3 Factors Influencing Bioleaching	7
2.1.3.1 Nutrients	7
2.1.3.2 O ₂ and CO ₂	8
2.1.3.3 pH	8
2.1.3.4 Temperature	8
2.1.3.5 Mineral substrate	8
2.1.3.6 Heavy metals	9
2.1.4 Bioleaching Microorganism	9
2.1.4.1 Isolation of thermophiles	12
2.1.4.2 Selection of Microorganism for Bioleaching	17
2.1.4.3 Effect of High Temperature on Cellular Compo	onents of the
Microorganism	19

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND RESEARCH

1.1.1 History/Background of Bioleaching

In the mining technology, hydrometallurgy is a method obtaining metals from their ores. It is a technique involving the use of liquid for the recovery of metals from ores, and concentrates. Ore is a type of rock that contains mineral with important element including metals. The ores can be extracted from earth through mining and then further refined. The grade or concentration of an ore mineral, or metal, will directly affect the costs associated with mining the ore. Thus, interest using biohydrometallurgy increases as it is an economical alternative for treating specific mineral ores especially for low grade ores.

Bio-hydrometallurgy is a combination of principle such as:

- i. made used of microorganism usually bacteria or archae (Bio),
- ii. process takes place in aqueous environment (hydro),
- iii. Deal with metal production and metal treatment (metallurgy).

There are few important processes in bio-hydrometallurgy such as bioleaching, bio-oxidation, bio-exidation, bio-sorption and bioaccumulation. Bio-oxidation is a method of leaching where by the undesired metal are leached away and the desired metal remain in solid phase. Bio-sorption is a passive process where it does not require energy. These process absorbed contaminants onto the cellular structure. Bioaccumulation differ from bio-sorption as it is an active process, where substances such as pesticides or other chemicals accumulate in an organisms. Bioremediation is a treatment that uses microorganism to break down hazardous substances into non-toxic substances. (Rawlings D., 1997)

Bioleaching on the other hand are the technology involves the extraction of useful element from ores by bacteria, the desired metal leached and solubilized. The difference