

**PHOTOBIODEGRADATION OF PHENOL USING
MIXED MICROBIAL CULTURE AND N-S-TiO₂
UNDER VISIBLE LIGHT**

MOHAMED FIRDAUS BIN NORDIN

**This thesis is submitted in fulfillment of the
requirements for Degree of Bachelor of Eng. (Hons)
Chemical and Bioprocess**

FACULTY OF CHEMICAL ENGINEERING

UNIVERSITI TEKNOLOGI MARA

SHAH ALAM

JULY 2016

ACKNOWLEDGEMENT

Firstly I wish to thank God for giving me the opportunity to embark on my degree and for completing this long journey successfully. My special gratitude goes to my parents for their prayers, encouragement, support and this thesis is dedicated to them for the vision and determination to educate me.

A special appreciation to my supervisor Mr. Mohamad Sufian bin So'aib who consistently giving guidance, encouragement and continued support towards completing this study to success. I also would like to sincerely thank Nur Najwa binti Yunus for her guidance and also valuable discussions during our meeting together. Besides that, my appreciation also goes to Nur Syazrin Amalina for assistances in teaching and helping me during the experiment and also for helping me in obtaining important data for biodegradation of phenol.

Finally I also would like to wish thank you to my friends for their support either technically or morally through this one year. For my colleagues, Amir Ridwan bin Mohammed Rodzi, Ainul Jamilah binti Azman and Nur Wanim binti Borhan, I would like to thank them for the many discussions that gave me new information and knowledge and also their assistance during the experiment and also in completing my report.

ABSTRACT

Photobiodegradation is a process of combining two methods of degradation which are photodegradation and biodegradation. In this project, it uses both the light and microorganism (mixed microbial culture) to degrade phenol compound. The kinetic of photodegradation of phenol using N-S TiO₂ catalyst under visible light at various dopant concentrations, catalyst loadings and initial phenol concentrations (during photobiodegradation) were investigated. The biodegradation performance (during photobiodegradation) was also evaluated. From the first experiment, the dopant concentration that offers the best result for first order reaction was 1.00% with the apparent rate constant, k_{obs} of 0.226 h⁻¹. Meanwhile, the best catalyst loading was 2 g/l with k_{obs} of 0.564 h⁻¹. For photobiodegradation, the most promising result was obtained at the initial phenol concentration of 25 ppm where complete phenol degradation achieved within six hours of reaction.

TABLE OF CONTENT

CHAPTER ONE: INTRODUCTION

1.1	BACKGROUND OF STUDY	1
1.2	PROBLEM STATEMENT	2
1.3	RESEARCH OBJECTIVES	3
1.4	SCOPE OF STUDY	4

CHAPTER TWO: LITERATURE REVIEW

2.1	PHENOL.....	5
2.1.1	Structure of phenol	5
2.1.2	Physical and chemical properties of phenol	5
2.1.3	Sources of phenol	6
2.1.4	Effect of phenol to environment and health (importance of removing)	6
2.1.5	Ways to remove or degrade phenol	7
2.2	BIODEGRADATION.....	7
2.2.1	Definition of biodegradation	7
2.3	PHOTODEGRADATION.....	9
2.3.1	Definition of photodegradation.....	9
2.3.2	Method of photodegradation.....	10
2.3.3	Advantages and disadvantages of photodegradation.....	13
2.4	LANGMUIR HINSHELWOOD (L-H) KINETIC MODEL.....	13
2.5.1	Advantage of using N-S-TiO ₂ as catalyst	16
2.5.2	Application of N-S TiO ₂ catalyst	16
2.5.2	Folin-Ciocalteu's phenol reagent	19
2.5.3	4-aminoantipyrine method	19

CHAPTER THREE: METHODOLOGY

3.1	MATERIALS AND CHEMICAL USE.....	20
3.2	EQUIPMENT USE	20
3.3	PREPARATION ON CATALYST.....	20
3.4	PHOTOCATALYST DEGRADATION PROCEDURE	21

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

Phenol (C_6H_6O); phenyl group ($-C_6H_5$) bonded to hydroxyl group ($-OH$) also known as carbolic acid. Phenol is the toxic substance regularly released as waste by the industries of textiles, leather, pharmaceutical, resin processing, oil plant (Azam Haddadi, 2013), coal conversion process, synthesis of organic chemicals, and also petroleum refining process (Hui Liu, 2011). The toxicity and carcinogenic properties that associate with phenol have makes it the dangerous chemical to the living organisms and ecosystem even with small quantity (I. Dobrosz-Gomez, 2015). Therefore, many actions taken to make sure phenolic compound release by those industries can be treated before exposure to environment take place.

Photobiodegradation is a process of combining two methods of degradation which are biodegradation and photodegradation. It uses both the microorganism and light to degrade chemical component. This process is a new process to be studied with a wish to have better result by utilizing two best known methods to degrade chemical components especially phenolic compound. The straight forward overview for this process is the chemical component will first undergo photodegradation by light with the help of catalyst before going to the second phase of the degradation by microorganism such as bacterial culture.

Photobiodegradation can be used to treat the phenolic compound available in the wastewater from various production plants such as from textile production and pharmaceutical plant. The phenol in the wastewater will be degraded into less or not