EFFECT OF CALCINATION TEMPERATURE OF ZINC OXIDE CATALYST IN PHOTOCATALYTIC DEGRADATION OF 2,4,6-TRICHLOROPHENOLS USING UV LIGHT

NUR MIRRAH BINTI ABU BAKAR

This report is submitted in partial fulfillment of the requirements needed for the award of Bachelor in Chemical Engineering (Hons)

FACULTY OF CHEMICAL ENGINEERING UNIVERISITI TEKNOLOGI MARA SHAH ALAM

JULY 2017

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to do my Research Project and for completing this long and challenging journey successfully. My appreciation and thanks go to my supervisor Dr. Safari Bin Zainal. Thank you for the support, patience and ideas that made it possible for me to be successful in the initiation and completion of this project. He also always guiding me and correcting my mistakes along the way. I also would like to express my gratitude to the lab technicians of the Laboratory of Faculty Chemical Engineering for providing the facilities, knowledge and assistance while doing my experiment. Special thanks to my colleagues and friends for helping me with this project. Finally, very thankful to my parents for their moral support, controlling emotion of me and blessings afford upon me for the successful completion of this thesis. Alhamdulillah.

ABSTRACT

2,4,6-Trichlorophenols (2,4,6-TCP) is one of the chlorophenols compound that have a highest toxicity. It carcinogen to human could cause blood and liver cancer throughout the drinking water and foods. Thus, the photocatalytic degradation of 2,4,6-TCP by using UV light and enhance by using Zinc Oxide are needed. The effect of different concentration of 2,4,6-TCP which are 10 ppm and 40 ppm and calcination temperature of catalyst i.e 400°C, 500°C and 600°C were investigated. The characterization of ZnO at different calcination temperature was performed by using Thermogravimetric (TGA) and Brunauer-Emmett-Teller (BET) analysis. The percentage degradation was measured by using HPLC instrument after exposed the 2,4,6-TCP at concentration of 10 ppm and 40ppm with ZnO catalyst under UV light for 6 hours. Therefore, the results show the weight loss and BET surface area decreased as the calcination temperature increased which is from 400°C to 600°C attribute to high thermal stability and has agglomerated particles in ZnO. The optimum degradation of 2,4,6-TCP for 10 ppm is 97.54% at 4 hours while for 40 ppm is 96.83% at 6 hours exposed to UV light at 600°C of calcination temperature of Zinc Oxide. It shows that ZnO catalyst at high calcination temperature lead to more effective in photocatalytic degradation of 2,4,6-TCP under UV light.

TABLE OF CONTENTS

			PAGE				
DECLARATION	1		i				
CERTIFICATION			ii				
ACKNOWLEDGEMENT			iv				
ABSTRACT			v				
TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS			vi ix x xii xiv				
				CHAPTER 1	INTRODUCTION		
					1.1	Research Background	1
					1.2	Problem Statement	2
1.3	Research Objectives	3					
1.4	Scope of the Research	3					
Refe	rences	4					
CHAPTER 2	LITI	ERATURE REVIEW					
	2.1	2,4,6-Trichlorophenol	5				
	2.2	Advanced Oxidation Process	6				
	2.3	Homogenous Advanced Oxidation Processes	7				
		2.3.1 Hydrogen Peroxide and Ultraviolet	8				
		Radiation					
		2.3.2 Fenton's Oxidation	9				
		2.3.3 Photo Fenton Oxidation	10				
	2.4	Heterogeneous Advanced Oxidation Processes	12				
		2.4.1 Photocatalysis	12				
		2.4.2 Zinc Oxide Photocatalyst	13				

CHAPTER 1

INTRODUCTION

1.1 RESEARCH BACKGROUND

In 1950, the first reported production of 2,4,6-Trichlorophenols (2,4,6-TCP) was at United States (IARC 1979). Unfortunately in 1975, the product of 2,4,6-TCP was not produce anymore due to the cost of removing chlorinated dibenzo-p-dioxins which exist as toxic impurities is high (HSDB 2009). Next, in year 2009 the production of 2,4,6-TCP continue produce by one manufacturer each in China, India and Europe. 2,4,6-TCP is one of the chlorophenols compound which is resistant to biodegradation and continue in the environment for long duration of time. They are one of the largest numbers of group of industrial toxic compound and usually found in industrial wastewaters like pulp and paper, dye and pigment, pharmaceuticals and municipal waste incineration (Ghanbari et al. 2016). They could be separated by wind and water. Besides that, they could grow and released from one species to the next through the food chain. Therefore, chlorophenols are recognized as environmental pollutants owing to their high potential of phytotoxicity and zootoxicity (Gaya et al. 2010). Hence, the cholorophenols compound which is in the aqueous systems has to be converted into a nontoxic species or less harmful species.

The uses of 2,4,6-TCP usually in many type of pesticide formulations and as a wood preservative. For example, the used of 2,4,6-TCP is in pesticide like fungicides, bactericide, herbicides and as glue preservative while in textile as antimildew agent (IARC 1979, HSDB 2009) but most of the uses this compound is terminated in United State. In ambient air, this compound was detected at very low