



## **E-PROCEEDINGS**

# INTERNATIONAL TINKER INNOVATION & **ENTREPRENEURSHIP CHALLENGE** (i-TIEC 2025)

"Fostering a Culture of Innovation and Entrepreneurial Excellence"



e ISBN 978-967-0033-34-1



Kampus Pasir Gudang

### **ORGANIZED BY:**

Electrical Engineering Studies, College of Engineering Universiti Teknologi MARA (UITM) Cawangan Johor Kampus Pasir Gudang https://tiec-uitmpg.wixsite.com/tiec

### E-PROCEEDINGS of International Tinker Innovation & Entrepreneurship Challenge (i-TIEC 2025)



"Fostering a Culture of Innovation and Entrepreneurial Excellence"

### 23<sup>rd</sup> JANUARY 2025 PTDI, UiTM Cawangan Johor, Kampus Pasir Gudang

### Organized by

Electrical Engineering Studies, College of Engineering,
Universiti Teknologi MARA (UiTM) Cawangan Johor, Kampus Pasir Gudang.
https://tiec-uitmpg.wixsite.com/tiec

### **Editors**

Aznilinda Zainuddin Maisarah Noorezam

### Copyright © 2025 Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750 Masai Johor.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, whether electronic, mechanical, or otherwise, without prior written consent from the Undergraduate Coordinator, Electrical Engineering Studies, College of Engineering, Universiti Teknologi MARA (UiTM) Cawangan Johor, Kampus Pasir Gudang.

#### e ISBN: 978-967-0033-34-1

The author and publisher assume no responsibility for errors or omissions in this e-proceeding book or for any outcomes related to the use of the information contained herein.

The extended abstracts featured in this e-proceeding book have not undergone peer review or verification by i-TIEC 2025. The authors bear full responsibility for the content of their abstracts, guaranteeing that they are original, unpublished, and not concurrently submitted elsewhere. The opinions presented in the abstracts reflect those of the authors and do not necessarily align with the views of the editor.

Published in Malaysia by Universiti Teknologi MARA (UiTM) Cawangan Johor Kampus Pasir Gudang, 81750 Masai

| A-ST034: BABYBITES: THE SMART, PORTABLE, INNOVATION SOLUTION FOR MODER PARENTING                          |     |
|-----------------------------------------------------------------------------------------------------------|-----|
| A-ST035: SMART FARMING: IOT-ENHANCED GREENHOUSE CONTROL SYSTEM                                            | 106 |
| A-ST036: HALWA TIMUN                                                                                      | 115 |
| A-ST038: INTELLIGENT FLOOD DETECTION AND ALERT SYSTEM                                                     | 120 |
| A-ST039: INTELLIGENT AUTOMATED CLOTH DRYING SYSTEM FOR HOME APPLICAT                                      |     |
| A-ST042: HOME AUTOMATION WITH ENERGY EFFICIENCY SYSTEM                                                    | 136 |
| A-ST044: ENHANCED ANTI-THEFT SAFETY BOX SYSTEM FOR HOME APPLICATION                                       | 142 |
| A-ST045: RFID-ENABLED PARKING SYSTEM FOR ENHANCED ACCESSIBILITY OF DISABLED DRIVERS                       | 148 |
| A-ST046: DEVELOPMENT OF AN EGFET PH SENSOR USING TIO2-PANI COMPOSITE THE FILMS FOR SOIL CHARACTERIZATION  |     |
| A-ST047: SOLAR-POWERED BIOMETRIC SECURITY SYSTEM: ENHANCING ACCESS CONTROL WITH SUSTAINABILITY            | 159 |
| A-ST050: FIRE AND SMOKE ALERT FOR ENHANCED SAFETY AND FAMILY ENVIRONM FUMISAFE                            |     |
| A-ST052: SMART MEASURE: PRECISION MEASUREMENT SYSTEM WITH CLOUD INTEGRATION                               | 168 |
| A-ST054: HYBRID FIBRE BREEZE BLOCK: A SUSTAINABLE AND LIGHTWEIGHT INNOVATION FOR MODERN CONSTRUCTION      | 172 |
| A-ST055: SAFE DRIVE: REAL-TIME MICROSLEEP AND DROWSINESS DETECTION SYS                                    |     |
| A-ST056: SMART WATER QUALITY DETECTOR                                                                     | 182 |
| A-ST057: CONTACTLESS SWITCH FOR CONTROLLING LOADS                                                         | 191 |
| A-ST058: INNOVATIVE IRRIGATION SYSTEM FOR AGRICULTURE                                                     | 197 |
| A-ST059: REVOLUTIONIZING POWER RESILIENCE: INNOVATIVE OPTIMIZATION FOR DISTRIBUTED GENERATION INTEGRATION |     |
| A-ST060: INNOVATIVE POWER GRID SOLUTIONS: STRENGTHENING RESILIENCE AGAINST DISRUPTIONS                    | 208 |

## A-ST060: INNOVATIVE POWER GRID SOLUTIONS: STRENGTHENING RESILIENCE AGAINST DISRUPTIONS

Fathiah Zakaria, Ismail Musirin, Norziana Aminudin and Dalina Johari Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Corresponding author: Ismail Musirin, ismailbm@uitm.edu.my

### **ABSTRACT**

The resilience of power systems against disruptive events, such as hurricanes, is crucial for ensuring stability and reliability. This study introduces the Evolutionary Chaotic Cloning-Squirrel Algorithm (ECCSA), an innovative optimization technique designed to enhance power system resilience through optimized load-shedding strategies. ECCSA integrates chaotic dynamics and clonal selection principles with the Squirrel Search Algorithm to address limitations in traditional optimization methods, such as entrapment in local optima, thereby improving solution accuracy and efficiency. The proposed framework was applied to the IEEE 57-Bus Reliability Test System, analyzing two hurricane scenarios with varying reactive power demands. ECCSA demonstrated its ability to determine optimal loadshedding locations and sizes, significantly reducing power losses and improving resilience indices. For example, at Bus 33, power losses were reduced by 40.17% in Scenario 2, with resilience indices improving notably. The uniqueness of ECCSA lies in its hybrid optimization approach, adaptability to dynamic conditions, and effectiveness in minimizing transmission losses. Socio-economically, it ensures reliable power delivery, supports renewable energy integration, and reduces the environmental impact of power outages. Its scalability and costeffectiveness present strong commercialization prospects, making ECCSA a robust solution for modernizing power grids and addressing the growing demand for resilient energy systems.

**Keywords:** Load-Shedding Optimization, Power System Resilience, Evolutionary Chaotic Cloning-Squirrel Algorithm (ECCSA), IEEE 57-Bus RTS

### 1. Product Description

The Evolutionary Chaotic Cloning-Squirrel Algorithm (ECCSA) is an advanced optimization framework designed to enhance power system resilience against disruptive events, such as hurricanes. By combining chaotic dynamics, clonal selection principles, and the Squirrel Search Algorithm, ECCSA overcomes limitations of traditional optimization methods, such as local optima entrapment, ensuring precise and efficient solutions for load-shedding strategies. ECCSA's unique features include its ability to determine optimal load-shedding locations and capacities, significantly reducing power losses and improving system resilience. Applied to the IEEE 57-Bus Reliability Test System, ECCSA demonstrated its effectiveness by reducing power losses by up to 40.17% and enhancing resilience indices in critical scenarios. Its adaptability to dynamic conditions and varying operational demands make it a robust tool for modern grid management. The product's socio-economic and

environmental impact lies in its ability to ensure reliable power delivery, particularly during extreme events, while supporting renewable energy integration and reducing greenhouse gas emissions. This promotes energy security, minimizes outage costs, and supports sustainable development. With scalability and cost-effectiveness, ECCSA presents strong commercialization prospects as a reliable, data-driven solution for utility providers, offering a competitive edge in modernizing grids and addressing the growing global demand for resilient and sustainable energy systems.

### 2. Method Flow Chart and Model Description

The study evaluates power system resilience under hurricanes using the IEEE 57-Bus RTS. The system is divided into two regions to mimic real-world transmission systems.

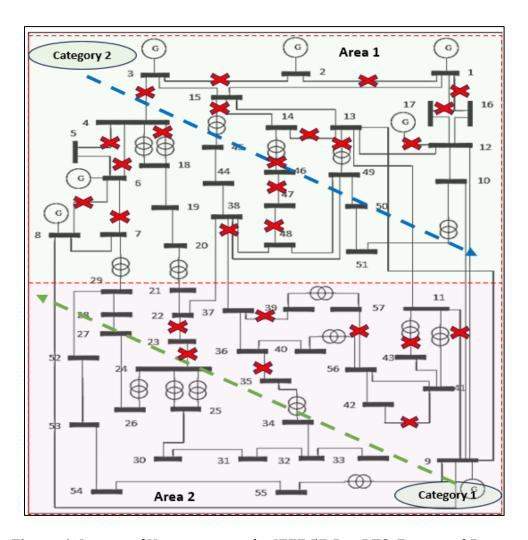



Figure 1. Impact of Hurricanes on the IEEE 57-Bus RTS: Zones and Patterns

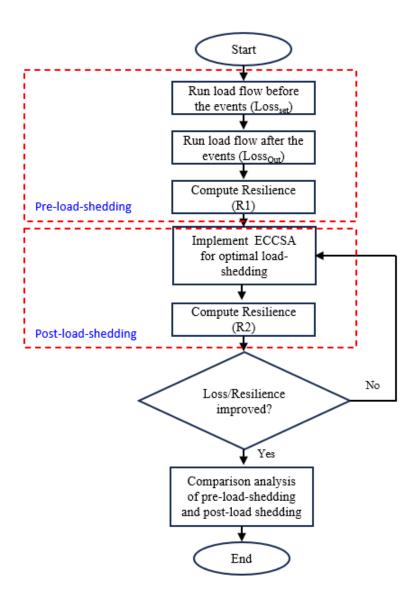



Figure 2. ECCSA Flowchart

**Figure 1** hurricane patterns and **Figure 2** illustrates the optimization flowchart. A new ECCSA algorithm, combining CSO, SSA, and EP, addresses local optima challenges. The process involves two stages: pre-load-shedding and post-load-shedding. Initially, system losses and resilience (R1) are calculated under normal and disrupted conditions. ECCSA then optimizes load-shedding, reducing losses and improving resilience (R2). Results are iteratively refined until improvements are achieved. **Table 1** shows baseline losses, outage impacts, and post-optimization results. For example, Bus 31's losses at 15 MVAr drop from 42.753 MW to 32.215 MW, with resilience improving from 2.508 to 3.057. The ECCSA demonstrates significant loss reduction and resilience enhancement.

**TABLE 1.** Numerical results of scenario 1

| SCENARIO 1       |        |        |        |        |        |        |       |           |        |  |  |
|------------------|--------|--------|--------|--------|--------|--------|-------|-----------|--------|--|--|
| BUS              |        | 31     |        |        | 32     |        |       | 33        | ı      |  |  |
| $Q_D$            | 5      | 10     | 15     | 5      | 10     | 15     | 5     | 10        | 15     |  |  |
| (MVAR)           |        |        |        |        |        |        |       |           |        |  |  |
| LOSSSET          | 28.464 | 29.220 | 30.565 | 28.667 | 29.424 | 30.661 | 28.5  | 57 29.298 |        |  |  |
| (MW)             |        |        |        |        |        |        |       |           |        |  |  |
| LOSSout          | 32.850 | 34.413 | 42.753 | 33.254 | 34.836 | 39.148 | 33.03 | 34.512    | 37.997 |  |  |
| (MW)             |        |        |        |        |        |        |       |           |        |  |  |
| $LOSS_{LS}$      | 29.485 | 31.231 | 32.215 | 29.997 | 31.852 | 32.541 | 31.2  | 32.514    | 32.614 |  |  |
| (MW)             |        |        |        |        |        |        |       |           |        |  |  |
| R1               | 6.488  | 5.627  | 2.508  | 6.250  | 5.437  | 3.613  | 6.38  | 2 5.618   | 4.101  |  |  |
| R2               | 8.762  | 9.816  | 3.057  | 9.213  | 10.676 | 4.926  | 17.58 | 37 16.271 | 6.059  |  |  |
| LOC <sub>1</sub> | 8      | 21     | 21     | 10     | 5      | 9      | 10    | 8         | 15     |  |  |
| $LOC_2$          | 5      | 5      | 5      | 8      | 9      | 5      | 13    | 5         | 7      |  |  |
| LOC3             | 6      | 13     | 13     | 7      | 12     | 13     | 5     | 21        | 6      |  |  |
| $PD_1$           | 65.75  | 74.44  | 107.10 | 31.97  | 112.40 | 59.57  | 70.2  | 8 46.98   | 37.51  |  |  |
| $PD_2$           | 150.54 | 167.95 | 75.69  | 61.78  | 139.98 | 140.67 | 44.1  | 0 133.32  | 51.34  |  |  |
| <b>PD</b> 3      | 57.48  | 29.35  | 48.95  | 73.51  | 63.58  | 39.55  | 150.8 | 33 51.21  | 50.49  |  |  |
| $QD_1$           | 98.60  | 34.71  | 26.10  | 41.47  | 139.84 | 75.43  | 157.9 | 97 64.35  | 15.83  |  |  |
| $QD_2$           | 27.42  | 119.45 | 13.25  | 99.12  | 26.89  | 90.27  | 61.7  | 8 41.47   | 34.71  |  |  |
| $QD_3$           | 46.36  | 181.46 | 43.97  | 73.51  | 63.58  | 39.55  | 83.8  | 9 41.94   | 111.52 |  |  |

### 3. Novelty and uniqueness

The Evolutionary Chaotic Cloning-Squirrel Algorithm (ECCSA) is a groundbreaking optimization framework designed to address the critical challenges of power system resilience in the face of disruptive events. Its novelty lies in the integration of chaotic dynamics, clonal selection principles, and the Squirrel Search Algorithm into a cohesive approach. This hybridization allows ECCSA to overcome common limitations of traditional optimization methods, such as local optima entrapment, and deliver superior accuracy and efficiency in solving complex power system challenges. What sets ECCSA apart is its ability to dynamically adapt to varying system conditions and operational demands, ensuring optimal load-shedding strategies during extreme events. Unlike conventional algorithms, ECCSA incorporates a resilience-focused approach, quantifying system performance before and after optimization, and targeting critical areas for intervention. The uniqueness of ECCSA is demonstrated in its application to the IEEE 57-Bus Reliability Test System, where it significantly reduced power losses and enhanced resilience indices under various scenarios. This innovative algorithm not only ensures reliable power delivery but also supports the integration of renewable energy sources, promoting sustainability. Its scalability and

versatility make it a pivotal solution for modernizing power grids, providing a unique combination of precision, adaptability, and robust performance for future energy systems.

#### 4. Benefit to mankind

The ECCSA enhances power system resilience and reliability, ensuring critical services like healthcare and communication remain operational during disruptions such as hurricanes. By optimizing load-shedding strategies, it minimizes the socio-economic impact of outages. ECCSA promotes sustainability by supporting renewable energy integration, reducing reliance on fossil fuels, and lowering greenhouse gas emissions, contributing to climate change mitigation and a cleaner environment. Its scalability and adaptability make it suitable for diverse conditions, including Malaysia's flood-prone regions, ensuring reliable energy distribution during natural disasters. ECCSA's efficiency in reducing power losses and improving resilience indices benefits both urban and rural populations by providing stable and equitable energy access. Moreover, its cost-effective approach empowers utility providers to modernize grids while fostering a sustainable energy future. This innovative algorithm addresses global energy challenges, offering a robust solution for resilient, reliable, and environmentally friendly power systems.

### 5. Innovation and Entrepreneurial Impact

The ECCSA is an innovative optimization framework that revolutionizes power system resilience by integrating chaotic dynamics, clonal selection principles, and the Squirrel Search Algorithm. This advanced methodology ensures precise load-shedding strategies, overcoming challenges like local optima entrapment and enhancing system reliability during disruptive events. ECCSA's adaptability to dynamic conditions, coupled with its ability to reduce power losses and improve resilience indices, highlights its groundbreaking impact. By supporting renewable energy integration and minimizing environmental impact, it aligns with global sustainability goals, making it an essential tool for modern grid management. From an entrepreneurial perspective, ECCSA offers substantial commercialization opportunities. Its scalability, cost-effectiveness, and robust performance make it a valuable asset for utility providers seeking to modernize power grids and enhance operational efficiency. This innovation positions businesses at the forefront of the energy sector, driving sustainable development and addressing the global demand for resilient energy systems.

### 6. Potential commercialization

The ECCSA holds significant commercialization potential in the energy sector. As a cost-effective, scalable, and adaptable solution, it optimizes load-shedding strategies and enhances power system resilience, making it highly valuable for utility providers and energy companies. ECCSA reduces power losses and improves resilience indices under dynamic and extreme conditions, supporting renewable energy integration and aligning with global sustainability goals. Its versatility across grid sizes and configurations ensures adoption in both urban and rural areas. The algorithm's market readiness is supported by its copyright certification and registration with MyIPO, Malaysia, ensuring intellectual property protection. Further establishing its credibility, ECCSA won the Gold Award in the Semarak

International Research Article Competition 2024 (SIRAC) and is advancing toward journal publication. Additionally, it has practical applications in Malaysia, particularly in managing energy systems during flood disasters, positioning it as a groundbreaking innovation for resilient and sustainable energy systems.

### 7. Authors' Biography



Fathiah Zakaria received her Bachelor's degree (Hons) in Electrical & Electronics Engineering from Universiti Teknologi Petronas (UTP) in 2008 and her MSc in Electrical Engineering from Universiti Teknologi MARA (UiTM) in 2014. She is currently pursuing a PhD in Electrical Engineering, specializing in power system, at UiTM Shah Alam, Malaysia. Since 2014, she has been a lecturer at UiTM. Her research interests include artificial intelligence, optimization, and power system.



Prof. Ir. Dr. Ismail Bin Musirin obtained Bachelor of Electrical Engineering (Hons) in 1990 from Universiti Teknologi Malaysia, MSc in Pulsed Power Technology in 1992 from University of Strathclyde, United Kingdom and PhD in Electrical Engineering from Universiti Teknologi MARA (UiTM), Malaysia in 2005. He is currently a Professor of Power System at the School of Electrical Engineering, College of Engineering, UiTM and headed the Power System Operation (POSC) Computational Intelligence Research Group. His research interest includes Power System Stability, Distributed Generation Optimization, Artificial Intelligence Applications, Optimization Algorithms Derivations and Machine Learning Applications.



Dr. Norziana Aminudin is a Senior Lecturer at Universiti Teknologi MARA (UiTM) Shah Alam and an active member of the Power System Operation Computational Intelligence Research Group at UiTM. Her research focuses on artificial intelligence, with expertise in optimization techniques, machine learning, and risk assessment in power systems. Since 2007, she has contributed extensively to the field through numerous journal publications and conference papers, advancing innovative solutions for modern power system challenges.



D. Johari De Received her PhD degree in Engineering Sciences with Specialization in Atmospheric Discharges from Uppsala University, Sweden in 2017. She obtained her MSc degree in Electrical Engineering from Universiti Teknologi MARA (UiTM), Malaysia in 2008 and B.Eng. in Electrical Engineering (Hons) from the University of Liverpool, UK in 1999. She worked as an operation & maintenance engineer from 2000 to 2003 and continued as a senior planning engineer until 2005. D. Johari now serves as a senior lecturer at UiTM, Shah Alam, Malaysia. She is also a graduate member of the Board of Engineers Malaysia (BEM). Her research interests includes lightning physics, lightning protection, lightning prediction, high voltage engineering, power system and artificial intelligence. She be contacted at dalinaj@uitm.edu.my.