UNIVERSITI TEKNOLOGI MARA

PARAMETRIC STUDY OF LEUCAENA OIL AS BIOADHESIVE FORMULATION

NOR ATIRA BINTI ARSHAD

B.Eng

JULY 2017

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. Praise to Almighty God for his favor to us in bestowing the ability to complete this project. I would like to express my gratitude to my understanding and helpful supervisor, Dr. Azil Bahari Alias for his guidance and advices throughout the period of the project. Thank you for the support, patience and ideas in assisting me with this project. I also would like to express my gratitude to the staff of the Instrumentation Laboratory, especially to Encik Yazid for providing the facilities, knowledge and assistance.

Special thanks to my colleagues and friends for helping me with this project. Finally, this thesis is dedicated to the loving memory of my very dear father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

Thank you.

ABSTRACT

A gradually increase in the value of crude oil and a serious worry about the production of non-renewable energy have encouraged the finding of another renewable sources for fuel, energy and new material production. The aim of this study is to synthesis and characterize the physical and chemical properties of bio based phenolic resin compound derived from the *Leucaena sp. wood* by gasification method. This study also carried out to formulate Bio-based phenol formaldehyde adhesive at different condition (temperature, time and catalyst loading) and comparison study with the commercialized petroleum based phenol formaldehyde resole resin adhesive. In order to produce the bio based phenol resin, we use gasification method by using upgraft gasifier reactor while to formulate the phenol formaldehyde which are reaction in the basic condition. The phenol resin and bioadhesive were further analyzed by GC-MS to know the component and composition by percentage in phenolic resin and phenol formaldehyde. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimum temperature, time and catalyst loading are 90°C, 30 mins and 0.4g.

Contents

SUPERVISOR'S CERTIFICATION	i
AUTHOR'S DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF SYMBOLS AND ABBREBATIONS	viii
CHAPTER 1: INTRODUCTION	1
1.0 Background Research	1
1.1 Problem statement	2
1.2 Scope study	3
1.3 Objective	3
Chapter 2 : LITERATURE REVIEW	4
2.0 Leucaena sp. Wood	4
2.0.1 Leucaena sp. Wood Composition	6
2.1 Biomass Conversion	7
2.1.1 Thermochemical Conversion of Leucaena sp. Wood	10
2.2 Mechanism of Gasification	13
2.3 Phenol Formaldehyde Resin Synthesis	14
2.4 Adhesive	16
2.4.1 Adhesive Commercial Applications	16
2.4.2 Adhesive in Wood Industry	18
CHAPTER 3: METHODOLOGY	19
3.1 Experimental Design	20
3.1.1 Material	20
3.1.2 Preparation for Leucaena sp. Wood gasification	20
3.1.3 Preparation for Bioadhesive Production	21
4.0 Characterization of Leucaena Oil	25
4.1 Physical Characteristic	25

CHAPTER 1: INTRODUCTION

1.0 Research Background

Nowadays there is a growing the use of composite material such as strand board, flake board and composite lumber, the wood industry is growing rapidly. One material have been used widely as the wood adhesive due to their excellent bonding, water resistance and durability. The material is Phenol formaldehyde. However, phenol is the primary component of the resin used in the wood adhesive derived from fossil fuel resources (petroleum and coal). However, there is a main issue of using this type of resin that is high cost, this is because it follows the fluctuation of the petroleum price. In addition, this type of resin has the material that is considered as the major indoor pollutant and thus very harmful for our health. Thus finding renewable material as other option for the raw material has become the main thing in interest for the resin production.

In this study, we will use the thermochemical gasification method. The gasification of biomass is a procedure used to convert solid biomass into gasified state and then condense the gas. Then it will change the phase from the gas form in liquid form. In the gasification process will conducted at higher temperature. Gasification of biomass can produce phenol resin and make the adhesive mixture due to its free hydroxyl (-OH) group that can polymerize with various functional groups to produce different polymers. Gasified biomass therefore can be used as a part of adhesive mixture by combined it with synthetic adhesive like formaldehyde. overall, gasification of biomass by using the upgraft gasifier reactor that produce product in the form of gas then the gas will condense by using condenser can be used in the production bio-adhesive. It will produce bio-oil. Then, the bio-oil will further the GCMS analysis.