

**PERFORMANCE AND DEVELOPMENT OF PEROVSKITE CATHODE WITH
APPLICATION TOWARDS GAS PURIFICATION**

NURUL NAZAH A BINTI SHAMSURI

**This report is submitted in partial fulfilment of the requirements needed for the
award of Bachelor in Chemical Engineering (Hons)**

**FACULTY OF CHEMICAL ENGINEERING
UNIVERSITI TEKNOLOGI MARA
SHAH ALAM**

JAN 2019

ACKNOWLEDGEMENT

Asaalamu'alaikum W.B.T. First of all, I would like to express my sincere appreciation to my supervisor Encik Ammar Mohd Akhir for his invaluable advice, coaching, support, giving practical exposure and fruitful discussion throughout the project without which I would not have succeeded in carrying out this research.

I also would like to thank my friends, Laila Azwani and Muhammad Firdaus for their endless help and support and for helping me with my experiment during this one year. Special thanks to UiTM staff for helping me during this process and for being patient and attentive towards me and my friends.

I also would like to acknowledge my mother, my father and my siblings for their love, motivation, support, patience and for standing by me through my time in my bachelor study especially during my toughest moments to which result in this research.

Thank You.

Nurul Nazaha binti Shamsuri

ABSTRACT

Solid Oxide Fuel Cell is one of the most advantages fuel cell as it is low pollutant emission, low noise, easy to produce and high energy performance. The research developed based on SOFC is to reduce its operating temperature as high temperature will reduce the performance of the cell. One of the most used material to make SOFC is Lanthanum Strontium Cobalt Ferrite (LSCF). LSCF is mixed with starch and Polyvinyl Alcohol as binder to be made into pellet which then will be sintered at temperature range of 600°C to 750°C which are the right temperature range for this study as temperature over 800°C is said to be damaging the materials and therefore reducing the performance of the cathode. The samples will be tested using the X-ray Diffraction (XRD). The electrical conductivity was measured using the Electrochemical Impedance Spectrometer (EIS). For the XRD data, it can be concluded that the size of the particle increases as the temperature increases from 31.18 nm to 38.64 nm. The size starts to decrease to 36.33 nm at 750°C. Based on the XRD profile, it can see that the highest peak for all different sintering temperature are around $2\theta = 32^\circ$ suggesting that they are of the same purity of metal and perovskite structure. For the EIS data profile, the electrical conductivity increase at 600°C to 700° from $4.4987 \times 10^{-5} \Omega/\text{cm}$ to $7.7916 \times 10^{-5} \Omega/\text{cm}$ and then decreases at 750°C to $6.8640 \times 10^{-5} \Omega/\text{cm}$. It is evident that the increase in electrical conductivity of the fabricated LSCF is parallel with the literature report. The findings are indicating that the pellet is starting to degrade at temperature 750°C.

TABLE OF CONTENTS

	PAGE	
DECLARATION	iii	
CERTIFICATION	iv	
ACCEPTED	v	
ACKNOWLEDGEMENT	vi	
ABSTRACT	vii	
TABLE OF CONTENTS	viii	
LIST OF TABLES	xi	
LIST OF FIGURES	xii	
LIST OF ABBREVIATIONS	xiv	
LIST OF SYMBOLS	xvi	
CHAPTER 1	INTRODUCTION	
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objectives of Study	3
1.4	Scopes of Study	4
CHAPTER 2	LITERATURE REVIEW	
2.0	Introduction	5
2.1	Perovskite Background	5
2.2	Advantages and Limitations of Fuel Cell	9

CHAPTER 1

INTRODUCTION

1.0 BACKGROUND STUDY

The rapid technological advances demand for the search of novel materials with special properties for specific applications. The excessive and fast utilization of natural energy (fossil fuel) has set off a worldwide energy challenges from both ecological also, industrial sides. Moreover, the expanding request of energy use on the planet commits researchers to discover options to survive and go up against the showed up issues (Abdalla, Hossain, Azad, & Petra, 2018). Oxygen and oxygen-enhanced air are essential for various industrial and medicinal applications. For instance, they can be utilized to enhance the efficiencies of combustion processes and lead to a decrease in carbon monoxide or on the other hand hydrocarbons in the exhausts. To acquire high purity of oxygen in substantial scale, cryogenic air separation is the main financially accessible method, which is known for its significant disadvantage of high energy utilization. The substitutions of the cryogenic air separation with different energy consuming oxygen separation techniques have been investigated for a long time. For example, this method can be used to produce pure Nitrogen and Oxygen gas that can be used for a lot of applications (Lin, 2006).

One important class of such compounds with wide applications is the perovskite oxide. Lanthanum perovskite offers a wide field of research due to its intriguing structural, electronic and magnetic properties (Ghogomu, Nforna, & Lambi, 2016). The synthesis of LSF, LSM and LSCF in different forms such as thin films, nanopowders, nano composites with various properties are valid as cathode materials for solid oxide fuel cells (SOFCs). Solid oxide fuel cells are devices which offer renewable energy and many advantages compare to other energy sources (Baharuddin, Rahman, & Muchtar,