TO STUDY THE PRE-TREATMENT EFFECT ON THERMAL DEGRADATION OF SHREDDED OIL PALM EMPTY FRUIT BUNCHES BY THERMOGRAVIMETRIC ANALYSIS

NUR FATIHAH BINTI HARUN

This report is submitted in partial fulfilment of the requirements needed for the award of Bachelor of Engineering (Hons) Chemical and Process

FACULTY OF CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

JULY 2017

ACKNOWLEDGEMENT

In preparing this research poject, I was in contact with many people, researchers and academicians. Firstly, I would like to express my special thanks of gratitude to my supervisor, Dr Rusmi Bin Alias which gave me a lot of knowledge and active guidance for my research project as well as Universiti Teknologi MARA for giving me a golden opportunity. Last but not least, I also want to extend my appreciation to my family, friends and team members for giving me a support and helping me develop ideas throughout this project.

ABSTRACT

Currently, there is abundance of waste from oil palm production which can be converted into valuable product and it is most effective and efficient solutions for sustainable energy supply correspond to the increasing of energy demand and also to reduce environmental pollution. Increasing in production of oil palm contribute to the increasing of biomass such as empty fruit bunch (EFB), palm kernel shell (PKS), and oil palm trunk. But then, some researchers found that the biomass has its own problem which is high moisture content, low density and low calorific value compared to fossil fuels to substitute as an alternative energy source. In this study, EFB is used and the pre-treatment is carried out at the earlier stage in order to determine the thermal decomposition of the sample. Initially, the sample was immersed using different method of pre-treatment which is conventional treatment and organosly treatment. In order to study the decomposition temperature, thermogravimetric analysis (TGA) was used with heating rate of 20°C/min and the initial temperature is 30°C and the final temperature is 900°C. In this experiment, 100 ml/min of nitrogen flow was used. During the process, the content in the EFB (hemicellulose, cellulose and lignin) affects the physical properties, texture and thermal reactivity. Based on the results, decomposition of EFB consist of three phase where drying period which water are liberated occur at temperature below 200°C, decomposition of hemicellulose and cellulose during devolatilization occur at the range temperature of 200°C to 500°C, in which at this phase there is a significant drop of in weight loss of sample due to evaporation of volatile hydrocarbon, and lastly followed by steady decomposition of heavy component occur at temperature above 500°C. This study reveal that the pre-treatment by using distilled water is a good pretreatment because the decomposition of sample is faster compared to others pretreatment where it shows a high peak on TGA graph.

TABLE OF CONTENTS

		PAGE
DECLARATIO	ON	ii
CERTIFICATION		iii
ACKNOWLEDGEMENT		V
ABSTRACT		vi
TABLE OF CONTENTS		vii
LIST OF TABLES		ix
LIST OF FIG	URES	X
LIST OF ABBREVIATIONS LIST OF SYMBOL		xi xii
CHAPTER 1	INTRODUCTION	
	1.1 Research Background	1
	1.2 Objectives	2
	1.3 Problem Statement	3
	1.4 Scope of Study	3
CHAPTER 2	LITERATURE REVIEW	
	2.1 Overview	4
	2.2 Fossil Fuels	4
	2.3 Biomass	6
	2.4 Utilization of Biomass in Malaysia	7
	2.5 Palm Oil Waste	9
	2.5.1 Empty Fruit Bunch (EFB)	10
	2.6 Alcohol Based Organosolv Pre-Treatment	12
	2.7 Thermogravimetric Analysis (TGA) of Biomass	12
CHAPTER 3	RESEARCH METHODOLOGY	
	3.1 Overview	14
	3.2 Palm Oil Waste Collection	14

CHAPTER 1

INTRODUCTION

1.1 Research Background

Fossil fuels are concentrated organic compounds, mainly known as concentrated biomass and found in the earth's crust which created from decayed of animals and plants. All those organic materials are converted to coal, crude oil and natural gas when it is exposed to pressure and heat in the earth's crust and take time over hundreds of million years. In fact, the oil deposits predicted will be gone by the year 2052 because it need a longer time to get fossil fuels, meanwhile, the rate of consumption are increased year by year where over 11 billion tonnes of oil in fossil fuels was consumed every year and crude oil are vanishing at rate of 4 billion tonnes per year. Unfortunately, a depletion of fossil fuels will occurred and it will run out earlier than expected as the world's population increases and also the demands on fossil fuels too (Tathagat *et al*, 2015).

Since there is a limited supply and to reduce dependence on fossil fuels, some researchers find other alternative energy source in order to substitute conventional fossil fuels. In the same time, they find out the biomass are rank as the third energy source after coal and oil and it is widely recognized as a clean and renewable energy source because energy conversion system based on biomass can reduce the potential of carbon dioxide emissions from atmosphere (Pereira *et al*, 2012). Other than that, it also helps to reduce greenhouse gases that can cause climate change (Shariff *et al*, 2014). In fact, Malaysia is the second largest country that produce and export of oil palm products in the world and automatically it generate a large amount of solid