UNIVERSITI TEKNOLOGI MARA

MOISTURE FORMATION OF UREA MAGNESIUM SULPHATE SYNTHESIZED VIA BALL MILLING

NUR ZHAFARINA BINTI ZULKEFLY

Thesis submitted in partial fulfillment of the requirements for the degree of **Bachelor of Engineering (Hons) Chemical**

Faculty of Chemical Engineering

July 2019

ACKNOWLEDGEMENT

Firstly, Alhamdulillah and I wish to thank to Allah for giving me His blessing and strength to finish my challenging journey of my study for this final year as an Engineering student in University Teknologi Mara, Shah Alam. I would like to dedicate my thanks to my beloved family especially towards my parents who always give me support especially in moral support. I also would like to extend my gratitude to my supervisor, Dr Atikah Binti Kadri for her moral support and is the Faculty of Chemical Engineering of Universiti Teknologi Mara for the access of the research facilities. Not forgetting my friends who always enlightened me in doing my research and their guidance in writing this report.

ABSTRACT

Higher population urge agricultural family to rise up their production in food source along with maintaining the growth of the plant as well. In order to improve nutrient in the soil so that the plant able to growth well, mechanochemical method was practiced as to synthesis of Urea Magnesium Sulphate (UMS). The UMS was synthesized based on different ratio and milling time via ball milling and the moisture content is investigated on the sample. The synthesizing is conducted based on ratio 1:1, 2:1, 1:0.7 and 1:2 of magnesium sulphate to urea with different time milling of 2, 4 and 8 minutes. The characterization of UMS is analyze by using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) is to determine the functional group of UMS and Thermal Gravimetric Analysis (TGA) is used to identify the moisture formation in UMS. It was found that most of the sample crystallized based on XRD graph pattern. The analysis found that urea magnesium sulphate with ratio of 1:2 at 8 minutes milling time has synthesized urea magnesium sulphate. While based on the FTIR the range of IR Spectrometry adsorption between 515cm1 to 4000cm-1 and it is shown that the most of the bond is found and similar with each other in the sample. To study proximate analysis, TGA is used as to identify the moisture content which is in between 800C to 1500C. High amount of magnesium sulphate and longest milling time has the lowest amount of moisture content. As to ensure the urea magnesium sulphate is synthesized with low moisture content, the milling time should be conducted with longer period.

TABLE OF CONTENT

AUT	THOR'S DECLARATION	iii	
SUP	PERVISOR'S DECLARATION	iv	
COORDINATOR'S CERTIFICATIONvi			
			ABS
TABLE OF CONTENT viii			
LIST	T OF TABLES	ix	
LIST	T OF FIGURES	Х	
СНА	APTER ONE: INTRODUCTION	1	
1.1	Research Background		
1.2	Problem Statement	5	
1.3	Objective	6	
1.4	Scope of Research	6	
СНА	APTER TWO: LITERATURE REVIEW	7	
2.1	Urea	7	
2.2	Magnesium Sulphate	9	
2.3	Ball Milling		
СНА	APTER THREE: METHODOLOGY	20	
3.1	Introduction		
3.1	1.1 List of Material	20	
3.1	1.2 List of Apparatus		
3.2	Process Flow Chart	22	
3.3	Materials	23	
3.3	3.1 FTIR Analysis	25	
3.3	3.2 Thermal Stability Analysis		
3.3	3.3 Vibrating Ball Mill		
3.3	3.4 X-Ray Diffraction Analyzer	27	

CHAPTER ONE

INTRODUCTION

1.1 Research Background

Urea is well known in preferred fertilizer uses for soil and leaf fertilization because the content in urea itself involve with contribution in supplying nutrient to soil which is nitrogen, phosphorus and potassium. Urea has highest amount of nitrogen content in solid fertilizer either prills or granules which is 46% makes urea to produce, transport and deliver to the farm (Templeman, January 1961).

The high solubility of urea in water supports the suitability as fertilizer solution such as foliar feed. Urea act as natural excretory product towards the organism in the sea and the nitrogenous compound is absorbed by marine plankton (Gillespie, 2018). Nitrate concentration helps in growth of plant due to the absorption of the nutrient is begins at the root surface which resulting in the diffused out of the pressure inside the roots.

The history of urea is origins from Rouelle first discovery in 1773. He found urea as a major organic compound which excreted by kidney releasing urine. After development of ammonia (NH_3) process, the production of urea is now synthesis from the NH_3 liquid and CO_2 gas (Saffran, 1999).

The reactions are as follow:

$$2NH_3 + CO_2 \rightleftharpoons _4COONH_2 + Heat$$
(i)

• Ammonia and carbon dioxide react to form ammonium carbamate as an intermediate in first reaction.

$$NH_4COONH_2 \Rightarrow NH_2CONH_2 + H_2O - Heat$$
 (ii)

1