UNIVERSITI TEKNOLOGI MARA CAWANGAN PULAU PINANG

SILVER NANOPARTICLES SYNTHESIS AND CHARACTERIZATION USING TURKEVICH METHOD

AHMAD AL-AMIN BIN AHAMAD HUSAINI

BACHELOR OF ENGINEERING (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

February 2025

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Ahmad Al-Amin Bin Ahamad Husaini	
Student I.D. No.	:	202290	
Programme	:	Bachelor of Engineering (HONS) Electrical and	
		Electronic Engineering (CEEE200)	
Faculty	:	Electrical Engineering Studies	
Thesis	:	Silver Nanoparticles Synthesis and Characterization	
		using Turkevich Method	
Signature of Student	:		
Date	:	February 2025	

ABSTRACT

The synthesis of silver nanoparticles (AgNPs) has been extensively studied due to their unique optical properties and various potential applications. However, issues such as agglomeration and impurities during synthesis can affect the optical properties and hinder their functionality. One commonly used chemical reduction method for synthesizing AgNPs is the Turkevich method. In this study, AgNPs were synthesized from silver nitrate (AgNO₃) using the Turkevich method by varying the molar concentration of trisodium citrate (C₆H₅0₇Na₃) at 0.5 g. 1.0 g. and 1.5 g in 20 mL of distilled water. The molar concentration of AgNO₃ was, kept constant at 0.034g in 100 mL of distilled water. The synthesis process was conducted at reaction temperatures of 70°C, 80°C, and 90°C, with a constant stirring speed of 900 rpm. The synthesized AgNPs were characterized using UV-Vis spectroscopy to assess their optical properties. field emission scanning election microscopy (FESEM) was employed to analyze their surface morphology, shape, and size distribution and energy dispersive x-ray spectroscopy (EDX) used to observe the elemental composition of material. Results shows that synthesizing AgNPs at reaction temperature 90°C resulted in smaller AgNPs with more consistent optical properties. Higher stabilizer concentration while reducing the size of nanoparticles leads to aggregation due to the formation of insufficient silver nuclei. The synthesis process was carefully controlled to ensure the successful formation of AgNPs with the desired properties.

ACKNOWLEDGEMENT

Firstly, I want to thank Almighty god Allah for allow me to finish my final year project. I am feeling blessed to finally able to complete my final year project 2 in duration that has been given. I would love to honor my supervisor, Dr. Nor Shahanim Mohamad Hadis for leading my path in understanding and sharing a lot of valuable knowledge regarding the project.

I would like to appreciate the hard work that Dr. Nor Shahanim Mohamad Hadis has put into sharing much information and patiently guided me throughout the final year project 2. Dr. Nor Shahanim has spent much time helping me even though need to focus on the subject she is currently teaching.

Finally, this thesis is dedicated to the loving memory of my very dear late father and to my mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah.

TABLE OF CONTENTS

AUT	THOR'S DECLARATION	i
ABS	TRACT	ii
ACF	KNOWLEDGEMENT	iii
TAE	BLE OF CONTENTS	iv
LIST	Г OF TABLES	vi
LIST	Γ OF FIGURES	vii
LIST	Γ OF APPENDICES	ix
LIST	Г OF SYMBOLS	X
LIST	Γ OF ABBREVIATIONS	xi
CHA	APTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	2
	1.2.1 Agglomeration of Nanoparticles	2
	1.2.2 Formation of Impurities in Synthesizing Silver Nanoparticles	2
1.3	Objectives	3
1.4	scope of work	4
1.5	Significance of Study	4
1.6	Outline of the Thesis	5
СНА	APTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Application of Silver Nanoparticles	6
2.3	Synthesis and study of silver nanoparticles	8
2.4	ULTRA-VIOLET VISIBLE Spectroscopy	11
2.5	Scanning Electron Microscopy (SEM)	12
2.6	Energy Dispersive X-Ray (EDX)	14
2.7	Summary	16