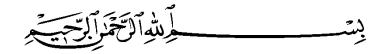
EFFECT OF PROCESSING PARAMETERS ON NANOFIBERS VIA WATER VORTEX AND CONVENTIONAL ELECTROSPINNING

MUHAMMAD HAZIQ BIN MOHD IZHAR


Thesis submitted in fulfilment of the requirements for the award of

Bachelor in Chemical Engineering (Hons)

FACULTY OF CHEMICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM

JULY 2017

ACKNOWLEDGEMENT

In the name of Allah, the most Merciful and Beneficent.

All praise and thanks are due to the Almighty Allah for giving me opportunity, determination and strength to complete my thesis. His continuous grace and mercy was with me throughout my life and even more during the tenure of my research. There are many people whom I have to acknowledge for their support, help and encouragement during the journey of completing this thesis. So, I will attempt to give them their due here, and I sincerely apologize for any omissions.

First and foremost, I would like to record my gratitude to my supervisor Dr. Atikah binti Kadri for her supervision, advice and guidance from the early stage of this research as well as giving me much information throughout the work. I appreciate all the contribution of time suppor and ideas in various ways. I am really indebted to her more than she knows.

I wish to express my thanks and gratitude to my parents, the ones who can never ever be thanked enough, for the overwhelming love and care they bestow upon me, and who have supported me financially as well as morally and without whose proper guidance it would have been impossible for me to complete my higher education.

Not to forget Universiti Teknologi MARA (UiTM) and Hochschule Hannover, Germany for the facilities provided in order for me to complete all the experiments and reports. Without their continuous support, this research project would not have been the same as presented here.

Thank you for all the support. Alhamdulillah.

Muhammad Haziq Bin Mohd Izhar

ABSTRACT

Electrospinning is recognized to be flexible process which able to produce fibers made of any compositions with desired diameter from microns to several nanometers. Many methods have been developed for improvement and to overcome the limitations regarding the produced fibers. In this work, water vortex was use as one of the method to produce nanofibers in form of a yarn. The aim of this work was to produce nanofibers from conventional and water vortex electrospinning technique. The morphological structure for both produced fibers were characterized using scanning electron microscope (SEM). The structures were compared for any differences.

TABLE OF CONTENTS

			PAGE
DECLARATION	1		ii
CERTIFICATION			iii
ACKNOWLEDGEMENT ABSTRACT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES			iv
			V
			vi
			viii
			X
CHAPTER 1	INT	RODUCTION	
	1.1	Research Background	1
	1.2	Problem Statement	2
	1.3	Research Objective	2
	1.4	Scope	3
CHAPTER 2	LITI	CRATURE RIVIEW	
	2.1	Introduction to Nanofiber	4
	2.2	Method of Production	4
		2.2.1 Electrospinning Process	5
		2.2.2 Phase Separation Metho	od 12
		2.2.3 Self – Assembly Method	d 14
	2.3	Polymer Used in Electrospinning	ng 14
	2.4	Application of Nanofiber	15
		2.4.1 Healthcare Sector	15
		2.4.2 Immobilization of Enzy	mes 17

CHAPTER 1

INTRODUCTION

1.1 Research Background

The development of nanotechnology has given a huge advantage to many sectors such as energy, health, textile, defence system. Many of the sectors have incorporate the use of nanotechnology in their new development to produce a material, devices or system in nano size. The novel chemical, physical and biological properties of nanomaterial size can be attributed to its unique shape and morphology to be applied in the industries.

Tissue engineering is one of the example that has attract attention as a fusion technology that enable the regeneration of tissues and organs lost cause by disease or accident. Even though there are many other methods to replace the lost of tissue such as autografts and allografts, there are still problem arise such as the availability of suitable harvest sites and rejection from mismatched donor – recipient pairs. The problem can be overcome by manufacturing of artificial porous structures called scaffolds (Park, Lee, Na, & Kim, 2013).

Numerous production of scaffolds from variety of materials and methods have been used in the field in attempts to fabricate and generate different tissues and organs in the body. The manufactured scaffolds should have considered the important keys to